

State of Michigan
Systems Development Life Cycle (SDLC)

OFFICE OF RESEARCH AND POLICY

NOVEMBER 2001

Version 1.0

Systems Development Lifecycle

The Systems Development LifeCycle (SDLC) integrates software development, project management, and
quality assurance processes into a software lifecycle that is controllable, predictable, and repeatable. The
lifecycle processes are compatible with SOM policy on software development and maintenance, and
compliant with the Capability Maturity Model (CMM) Level 2 and level 3 key process areas in the
Software Engineering Institute's model. The lifecycle processes are divided into phases, activities, and tasks
that can be combined or modified as necessary to fit the needs of various types and sizes of projects.

The State of Michigan has made a commitment to CMM Level by 2003. With that goal in mind, the
purpose of this document is to describe and define the lifecycle approved for use by the State of Michigan.

This document presents guidelines for an organized, disciplined approach to systems development projects
that is based on industry standards and best practices. It describes the methods and practices for each phase
of the systems development lifecycle that starts with project initiation and ends with project closeout.
Additional methods are provided for emergency maintenance. For each defined lifecycle phase, this
document presents guidelines for the development process and its management, and for the products
produced and their reviews.

Your comments, suggestions, and questions are welcome. We would like to know what works, or does not
work, for your project and why. We need your feedback to help identify information that should be
included or deleted in future SDLC releases. Please contact:

Department of Information Technology, Office of Research and Policy, Penny Dewey at 517-241-2926
deweyp1@michigan.gov

Points of Contact

Please forward any comments or questions to the Office of Research and Policy, Management within the
Department of Information Technology. The Office of Research and Policy can be reached at
(517)-373-2635, or visit our Web site at: http://www.michigan.gov/dit

All documents are located in the Enterprise IT Standards folder. The SDLC Framework folder contains
SDLC phases, checklists and templates.

mailto:Deweyp1@michigan.gov
http://www.state.mi.us/cio/oits

Acknowledgements

The State of Michigan would like to acknowledge the following individuals and organizations that created
this Systems Development Lifecycle. Without their input and hard work, this would not have been
achieved.

INDIVIDUALS

Penny Dewey
DIT – Research and Policy

David Hill
DMB, Office of Information
Technology Services Division

Larry Bailey
Department of Environmental Quality

Sheila Kelley
Department of State

Vaughn Bennett
DMB, Office of Project Management

Christine Knapp
MAIN

Dan Buonodono
DMB, Office of Project Management

Linda Myers
Department of Community Health

Juan Chapa
Department of Treasury

Cathy Pelham
DMB, Office of Information
Technology Services Division

Susan Felkowski
MAIN

Lucy Pline
MAIN

John Forslin
Department of Natural Resources

Ginger Schoettinger
Department of State

For ease of handling, these materials are divided into 12 sections and several appendixes. Guidelines have
been provided to allow tailoring of your project based on size and complexity.

Sections 1-11 contain information on the lifecycle. Section 12 contains information about Emergency
Maintenance. Checklists and templates are provided to assist in the preparation of the deliverables. Some
reference has been made to the Project Management Methodology (PMM) where appropriate.

Pink – refers to sections in the SDLC
Green – refers to forms
Red – deliverables of the phase
Blue is optional deliverables or web site

State of Michigan
Systems Development Lifecycle

Requirements

Definition (5)

Planning Phase
(4)

Programming

Phase (8)

Introduction (1)

Lifecycle
Model (2)
Project
Initiation (3)

Functional
Design
Phase (6)

System
Design
Phase (7)

Software Integration
and
Testing Phase (9)

Project Closeout (11)
Installation and
Acceptance Phase (10)

Emergency
Maintenance
(12)

Appendices
(A-T)

Initiate Project

Systems Development

Lifecycle (SDLC)

Service Request

Systems Development Lifecycle (SDLC)

Table of Contents

Section 1 - Introduction

Introduction ... 1-0
Highlights of Phase .. 1-1
Overview ... 1-2

 Components of the SDLC .. 1-4
 Implementation of Lifecycle ... 1-6
 Submitting Change Requests .. 1-7

Section 2 – Lifecycle Model
Lifecycle Model ... 2-0

Highlights of Phase .. 2-1
Overview ... 2-2
Criteria for Selecting Development Projects .. 2-5

 Project Screen and Selection ... 2-7
 Adapting the Lifecycle ... 2-11
 Development Techniques .. 2-15
 Commercial-Off-The Shelf (COTS) Products Based Projects.. 2-19
 Quality Reviews ... 2-20

Classic Mistakes in Software Projects .. 2-23

Section 3 – Project Initiation
Project Initiation ... 3-0

Highlights of Phase .. 3-1
Overview ... 3-2
Transition to Planning Phase .. 3-3
Taking Over an Existing Project .. 3-4
Beginning a New Project ... 3-5
How to Determine Project Status/Health .. 3-6

Section 4 – Planning Phase

Planning .. 4-0

Highlights of Phase .. 4-1
Overview ... 4-2
SDLC and PMM .. 4-4
Additional SDLC Planning Activities .. 4-5
Establish Communications with Plan .. 4-6
Develop Project Plan ... 4-7
Develop Software Quality Assurance Plan .. 4-9
Develop Configuration Management Plan .. 4-12
Investigate Software Alternatives ... 4-15
Investigate Hardware Alternatives .. 4-16
Formulate Platform Options ... 4-17
Conduct Project Reviews .. 4-18
Application Security Diagnostic Tool ... 4-19

January 2002 Page 4-i Table of Contents

Systems Development Life Cycle (SDLC)

Table of Contents

Section 5 – Requirements Definition Phase

Requirements Definition Phase ... 5-0
Highlights of Phase .. 5-1
Overview ... 5-2
Requirements Management .. 5-3
 Develop Requirements Traceability Matrix ... 5-4
 Requirements Change Control .. 5-6
Select Requirements Analysis Technique .. 5-7
Define Project Requirements .. 5-8
 Define Functional Requirements .. 5-14
 Define Input and Output Requirements .. 5-15
 Define Performance Requirements .. 5-16
 Define Customer Interface Requirements ... 5-17
 Define System Interface Requirements .. 5-18
 Define Communication Requirements ... 5-19
 Define Computer Security and Access Requirements .. 5-20
 Define Backup and Recovery Requirements ... 5-21
 Define Data Requirements .. 5-23
 Define Implementation Requirements ... 5-24
Compile and Document Project Requirements ... 5-26
 Develop Software Requirements Specification .. 5-27
Establish Functional Baseline ... 5-28
Develop Project Test Plan .. 5-29
 Identify Test Techniques .. 5-31
 Identify Test Phases .. 5-34
 Identify Test Environment Requirements .. 5-35
Develop Acceptance Test Plan ... 5-37
Select Design Technique ... 5-38
Revise Project Plan ... 5-39
Conduct Project Reviews .. 5-40
Records Retention and Disposition ... 5-41

January 2002 Page 4-ii Table of Contents

Systems Development Life Cycle (SDLC)

Table of Contents

Section 6 – Functional Design Phase

Functional Design Phase .. 6-0
Highlights of Phase .. 6-1
Overview ... 6-2
Determine Software Structure .. 6-3
 Identify Design Entities ... 6-4
 Identify Design Dependencies ... 6-5
Design Content of System Inputs and Outputs ... 6-6
Design Customer Interface .. 6-7
 Design Menu Hierarchy ... 6-9
 Design Data Entry Screens .. 6-11
 Design Display Screens .. 6-12
 Design Online Help .. 6-14
 Design System Messages .. 6-15
Design System Interfaces ... 6-16
Design System Security Controls .. 6-17
Build Logical Model ... 6-18
Build Data Model ... 6-19
Develop Functional Design .. 6-21
 Develop Functional Design Document ... 6-22
 Conduct Functional Design Review .. 6-23
Initiate Procurement of Hardware and Software .. 6-26
Revise Project Plan ... 6-27
Conduct Project Reviews .. 6-28

January 2002 Page 4-iii Table of Contents

Systems Development Life Cycle (SDLC)

Table of Contents

Section 7 – System Design Phase

System Design Phase ...7-0

Highlights of Phase ...7-1
Overview ...7-2
Select System Architecture ..7-3
 Evaluate System Architecture Alternatives ...7-4
 Recommend System Architecture ...7-6
Design Specifications for Software Modules ..7-7
Design Physical Model and Data Base Structure ..7-9
Develop Integration Test Plan ...7-10
Develop System Test Plan ..7-12
Develop Conversion Plan ...7-14
Develop System Design ..7-16
 Develop System Design Document ..7-17
 Conduct Critical Design Review ...7-18
Develop Program Specifications ...7-20
Define Programming Standards ...7-22
Revise Project Plan ..7-24
Conduct Project Reviews ...7-25

Section 8 – Programming Phase

Programming Phase ..8-0
Highlights of Phase ...8-1
Overview ...8-2
Develop Production Platform Acquisition Plan ...8-3
Develop Installation Plan ...8-4
Establish Programming Environment ..8-5
Write Programs ..8-6
Conduct Unit Testing ...8-8
Establish Development Baselines ..8-9
Plan Transition to Operational Status ..8-10
Generate Operating Documentation ..8-12
 Develop Procedures Manual ...8-14
 Develop Programmers Reference Manual ...8-16
Develop Training Program ..8-17
Revise Project Plan ..8-20
Conduct Project Reviews ...8-21

January 2002 Page iv Table of Contents

Systems Development Life Cycle (SDLC)

Table of Contents

Section 9 – Software Integration and Testing Phase

Software Integration and Testing Phase ..9-0
Highlights of Phase ...9-1
Overview ...9-2
Conduct Integration Testing ...9-3
Conduct System Testing ..9-5
Initiate Acceptance Process ...9-6
Conduct Acceptance Test Team Training ..9-8
Develop Maintenance Plan ..9-9
Revise Project Plan ..9-11
Conduct Acceptance Test ..9-12
Conduct Acceptance Process ...9-14
Alpha, Beta, Gamma Test Product ...9-15
Conduct Project Reviews ...9-20
Guidelines for Procedure Manual ..9-21
Technical Reference Guide ..9-22

Section 10 – Installation and Acceptance Phase

Installation and Acceptance Phase ...10-0

Highlights of Phase ...10-1
Overview ...10-2
Perform Installation Activities ..10-3
Conduct Installation Tests ...10-4
Conduct Customer Training ...10-5
Transition to Operational Status ..10-6
Revise Maintenance Plan..10-7
Revise Project Plan ..10-8
Conduct Structured Walkthrough(s) ...10-9
Conduct In-Phase Assessment ...10-10
Conduct Installation and Acceptance Phase Exit ..10-11

Section 11 – Project Closeout

Project Closeout ...11-0

January 2002 Page v Table of Contents

Systems Development Life Cycle (SDLC)

Table of Contents

Section 12 – Emergency Maintenance

Appendixes

A-Glossary
B-List of Abbreviations
C-Conducting Structured Walkthroughs
D-In-Phase Assessment
E-Phase Exit
H-Capability Maturity Model (CMM)
I-Commercial Off-the-Shelf Software (COTS)
J-Documentation Standards
K-
L-Large Projects (future)
M-Medium Projects (future)
N-Small Projects
O-Web Static Pages (future)
P-
Q-Computer Retirement Guidelines (future)
R-Records Retention Guidelines (future)
T-Bibliography

January 2002 Page vi Table of Contents

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 1

INTRODUCTION

Section 1: Introduction

Table of Contents

Introduction ...1-0
Highlights of Phase ...1-1
Overview ...1-2

 Components of the SDLC ...1-4
 Implementation of Lifecycle ..1-6
 Submitting Change Requests ...1-7

November 2001 Page 1-i Introduction

Section 1: Introduction

Highlights of Phase

Forms Utilized

Change Control Request Template

Submitting Change
Requests

Implementation of
Lifecycle

Components of the
SDLC

Introduction

Introduction

November 2001 Page 1-1 Introduction

Section 1: Introduction

Overview

Description:

Description

This section presents the standards and principles that form the basis for the
State of Michigan’s Systems Development Lifecycle (SDLC) processes.
The primary purpose of the lifecycle is to promote the development of
reliable, cost-effective, computer-based software products while making
efficient use of resources. Use of the lifecycle will also aid in the status
tracking, management control, and documentation efforts of the project.

This SDLC is consistent with other lifecycles used in the government and
private industry. It conforms to the statewide Project Management
Methodology (PMM) and the Capability Maturity Model (CMM)
components: software configuration management, software quality
assurance, software subcontractor management, project tracking and
oversight, software project planning, and requirements management. It
should be used in compliance with the State’s information architecture and
initiatives such as e-Michigan and Enterprise Information Technology
Standards.

Significant input for the lifecycle was obtained from agencies using
enterprise standards development teams. The lifecycle integrates agencies
best practices and focuses on the quality of both the software development
process and the deliverables generated from the process.

The SDLC is derived from the principles and standards advocated by
software quality industry leaders, such as The Institute of Electrical and
Electronics Engineers (IEEE) and the Carnegie-Mellon Software
Engineering Institute (SEI). This lifecycle is designed to enable project
teams to fully achieve Level 2 maturity on the SEI Capability Maturity
Model (CMM). Some Level 3 key process areas are also incorporated into
the lifecycle.

Software quality assurance is integrated into the SDLC, making quality the
responsibility of all project team manager(s) and members. To assure the
development of quality software products, the lifecycle prescribes reviews,
inspections, and audits for the lifecycle processes and technical
deliverables. To protect the integrity of the software, the lifecycle also
prescribes configuration controls over software, data, and technical
documentation.

The SDLC encompasses all aspects of the systems development lifecycle
from project initiation through production and maintenance, and integrates
the following basic lifecycle management concepts:

 Implementation of systems development preferred practices using a

graded approach based on the level of effort, complexity, and degree of
external impact of the software product.

 Implementation of a project management lifecycle including quality

assurance, configuration management, and a comprehensive testing
approach that is adaptable to the individual development environments.

 Application of a complete documentation approach supporting both

November 2001 Page 1-2 Introduction

Section 1: Introduction

Overview

Continued:

Benefits of Using a
Lifecycle:

lifecycle and project management activities, to assure an effective
method for managing, tracking, and evaluating software development
activities.

The SDLC was developed for project managers, project teams, and IT
managers who are responsible for developing a new computer-based
software product or making enhancements to an existing system. The
lifecycle will be reviewed on an annual basis and modified as needed to
keep pace with the changing needs of the agencies systems development
environment and the continuing technical advances in the information
technology industry.

The following sections provide additional information about using this
systems development lifecycle:

SDLC Components
Implementation of Lifecycle
Submitting Change Requests

The SDLC can be used on the following types of applications:

 Mainframe
 Client/Server
 Procurement
 Commercial Off-the-Shelf (COTS)
 Emergency Maintenance
 Enhancement
 Web Development

The benefits of using a clear, well-defined lifecycle increases the
probability that:

 The system’s performance will meet the customer’s needs
 Quality products are developed and maintained
 Resource use is optimized during development
 Systems will comply with relevant standards
 Efficient and effective applications will be built and implemented
 Risk will be accurately assessed and minimized
 The development process will produce a complete set of deliverables

per the CMM Level 3 model.

November 2001 Page 1-3 Introduction

Section 1: Introduction

Components of SDLC

Description:

Project Management
Methodology:

Enterprise Information
Technology Standards Program:

Enterprise Standards Review
Team (ESRT):

Since the issuance of the first version of the Project Management
Methodology (PMM) in May 2000, several State of Michigan agencies
have recognized the need for a Systems Development Lifecycle (SDLC)
that parallels the PMM to be considered for all software projects. A brief
discussion of some of these activities that are applicable to software
projects is provided in this section.

All software projects should be following the guidance provided by the
State of Michigan’s Project Management Methodology. Specifically,
software projects should review information concerning the six sections of
the PMM and the appendices, checklists, and templates.

The SOM Enterprise Information Technology (IT) Standards Program was
established to adopt and implement standards to ensure the wise
stewardship of information technology resources and to support the goals of
the SOM Information Technology environment. The Enterprise IT
Standards Program sponsors an ongoing Information Technology standards
adoption and publication process. This information is maintained on the
SOM Enterprise IT Standards Web site. (http://www.michigan.gov/dit)

Additionally, the Enterprise IT Standards Program is managed by the
Office of Research and Policy.

The Department of Management and Budget (DMB) is responsible, in
consultation with agencies, for ensuring that IT support systems for the
state are effective and efficient. Organizationally, this responsibility is
delegated to the State CIO. The State CIO meets monthly with agency
CIO's as a group called IMPACT (Information Management Policy
Advisory Committee) to discuss and formulate statewide information
technology policy.

Standardization of IT methods, approaches, equipment, software, and
protocols facilitates effective and efficient systems by:

 Enabling coordinated and timely standards development
administration
 Ensuring prioritization and support for standards development

processes
 Reducing cost of government through efficient and consistent

technology management

The purpose of this Enterprise Standards Development Lifecycle Process
(SDLP) is to allow IT Standards to evolve in an orderly and repeatable
manner while ensuring compatibility and supportability across the state's
core IT infrastructure. The SDLP provides a uniform, repeatable
mechanism for the development, adoption and application of enterprise IT
standards. The process includes a Sponsor to create requests, an Enterprise
Standards Review Team (ESRT) to provide guidance and administration of
standards development, and Standards Development Teams (SDT's) to
review, research, prepare findings, and draft standards for consideration and
review by IMPACT.

November 2001 Page 1-4 Introduction

http://www.state.mi.us/cio/oits

Section 1: Introduction

Components of SDLC

Comparison

The following table depicts the relationship between the systems development lifecycle (SDLC) and project
management.

SDLC Project Management
A framework for solving technical challenges.

Focus: Define the attributes of the desired product.

Who: What are the technical roles &
responsibilities.

Measurement: Progress against the technical
requirements.

A framework for planning and managing work.

Focus: Plan how to deliver product on time / within budget.

Who: What are the management roles & responsibilities.

Measurement: Progress against the project plan.

Illustrations in Sections

All illustrations throughout the systems development lifecycle we adopted from the Michigan
Administrative Information Network (MAIN) DCDS Time/Activity Reporting System Project.

The objective of this development project is to build an interface that will read the time sheet data from the
electronic files received from agencies, who have the time and attendance data maintained in their time
clock’s time management software or customized time/activity reporting system. Once the data has been
received from the state agency, it will then update the DCDS database with the time and/or activity data.
This will eliminate the need for time and/or activity data entry currently done in DCDS.

Samples of the objectives, scope, requirements and interfaces will appear throughout the document.

November 2001 Page 1-5 Introduction

Section 1: Introduction

Implementation of Lifecycle

Description:

Questions:

This lifecycle integrates software development, project management, and
quality assurance practices and is designed to be flexible. It can be adapted
to accommodate the specific needs of any software development project
and all computing platforms used by the agencies including standalone and
networked, mainframes, client/server, emergency maintenance,
enhancements, web development, procurement and commercial off-the-
shelf (COTS) software.

Projects that were initiated prior to the awareness or usage of this document
should plan to implement the lifecycle at the earliest feasible time or the
next release of the product. If a Project Plan already exists, make the
revisions necessary to integrate the systems development lifecycle, project
management, and quality assurance practices, as appropriate. If a Project
Plan does not exist, develop a plan that summarizes the activities and
deliverables of the previous phases and incorporates the lifecycle activities
and products into the subsequent phases.

Since the lifecycle does not provide specific guidance for every systems
development situation, suggestions for adapting the lifecycle to
accommodate projects of varying size, complexity, or criticality are
provided in Section 2 Lifecycle Model. Samples of project plans for projects
using the lifecycle are available on the Web site at:
http://www.michigan.gov/dit under Strategies and Methodologies.

If specific questions are generated concerning the interpretation or
applicability of portions of the lifecycle, the project team should attempt to
resolve them during the project review activities built into the phases of the
lifecycle. The system owner/customer(s) and other project stakeholders
must concur with any adaptations that are made.

Office of Research and Policy staff may also be consulted on the
interpretation or applicability of the lifecycle.

November 2001 Page 1-6 Introduction

http://www.michigan.gov/dit

Section 1: Introduction

Submitting Change Requests

Description:

The agency systems development environment is continuously changing as
emerging technologies are integrated into projects, system owner/customer
requirements are expanded, and organizational needs evolve. The systems
development lifecycle will be expanded and revised, as needed, to reflect
changes in the environment, improvements suggested through customer
feedback, and the maturation of software development capabilities.

Customers of the lifecycle are encouraged to submit suggestions for
improving its content and to report any practices that are difficult to
understand or create an implementation problem for a project team.
Suggestions and problems should be submitted on the Change Control
Request Template that is provided in the Project Management
Methodology. If the form is not available or does not accommodate the type
of request being made, submit a memo that describes the suggestion or
problem.

The Change Control Request template should be submitted to the Office of
Research and Policy. All requests will be evaluated and the originator of
the request will be notified of the action taken. Some requests will be
handled immediately while others may require investigation by an ad hoc
working group of knowledgeable personnel. In some cases, a request may
not be appropriate for the current environment, but will be retained for
future consideration.

November 2001 Page 1-7 Introduction

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 2

LIFECYCLE MODEL

Section 2: Lifecycle Model

Table of Contents

Lifecycle Model ..2-0

Highlights of Phase ...2-1
Overview ...2-2
Criteria for Selecting Development Projects...2-5

 Project Screen and Selection ...2-7
 Adapting the Lifecycle ...2-11
 Development Techniques ...2-15
 Commercial-Off-The Shelf (COTS) Products Based Projects ..2-19
 Quality Reviews ..2-20

Classic Mistakes in Software Projects ..2-23

November 2001 Page 2-i Lifecycle Model

Section 2: Lifecycle Model

Highlights of Phase

Classic Mistakes

Lifecycle Model

Commercial-Off-The Shelf (COTS)
Products Based Projects

Development Techniques
Adapting the Lifecycle

Quality Reviews

Project Screen
and Selection

Lifecycle Model

November 2001 Page 2-1 Lifecycle Model

Section 2: Lifecycle Model

Overview

Description:

This section describes the lifecycle model used for the State of Michigan’s
SDLC. This model partitions the lifecycle into ten major phases, as shown in
Exhibit 2.0-1, Software Lifecycle Phases and Deliverables. Each phase is
divided into activities and tasks, and has a measurable end point (Phase
Exit). The execution of all ten phases is based on the premise that the quality
and success of a software product depends on a feasible concept,
comprehensive and participatory project planning, commitments to resources
and schedules, complete and accurate requirements, a sound design,
consistent and maintainable programming techniques, and a comprehensive
testing program. The lifecycle phases and activities are described in Sections
3 through 11. Appendixes A-T follow.

All maintenance projects should adapt the systems development lifecycle to
meet the needs of the project. Any project that is defined as an emergency
should follow the guidelines in Section 12, Emergency Maintenance.

Intermediate deliverables are produced during the performance of the
activities and tasks in each phase. These deliverables are inspected and can
be used to assess software integrity, quality, and project status. As a result,
adequacy of requirements, correctness of designs, and quality of software
products become known early in the effort.

At least one time for each deliverable, a Structured Walkthrough is
performed. A Structured Walkthrough is an organized procedure for
reviewing and discussing the technical aspects of software development
deliverables including documentation. The walkthrough is usually conducted
by a group of peers; however, it also includes reviewers outside the
developer’s immediate peer group (see Appendix C).

At least one time during each phase, an In-Phase Assessment is performed.
An In-Phase assessment is an independent review of all deliverables during
each lifecycle phase. A Quality Assurance representative typically conducts
the assessment and the results are provided to the project manager. In-Phase
Assessments are recommended after the achievement of all major project
milestones and the completion of deliverables.

At the conclusion of each phase, a Phase Exit (see Appendix E) is initiated to
review the deliverables of that phase and to determine whether to proceed to
the next phase, continue work in the current phase, or abandon the project.
The approval of the system owner and other project stakeholders at the
conclusion of each phase enables both the system owner and the project
manager to remain in control of the project throughout its life, and prevents
the project from proceeding beyond authorized milestones.

The end products of the lifecycle are the software product, the data managed
by the software, associated technical documentation, and customer training
and support. The end products and services are maintained throughout the
remainder of the lifecycle in accordance with documented configuration
management procedures.

November 2001 Page 2-2 Lifecycle Model

Section 2: Lifecycle Model

Overview

Description
Continued:

The lifecycle model provides a method for performing the individual
activities and tasks within an overall project framework. The phases and
activities are designed to follow each other in an integrated fashion, whether
the phases of development are accomplished sequentially, concurrently, or
cyclically, etc. Project teams have the flexibility to adapt the lifecycle model
to accommodate a particular development environment, systems
development techniques (e.g., prototyping and rapid application
development), or other project constraints.

The amount of project and system documentation required throughout the
lifecycle depends on the size and scope of the project. System documentation
needs to be at a level that allows for full system operability, usability, and
maintainability. Typically, projects that require at least one work-year of
effort should have a full complement of documentation. For projects that
require less than one work-year of effort, the project manager and system
owner should determine the documentation requirements. In addition, the
project's security and quality assurance criteria may require the performance
of other activities and the generation of additional documentation.

The requirements for documentation should not be interpreted as mandating
formal; standalone printed documents in all cases. Progressive documents
that continuously revise and expand existing documentation, online
documents, forms, reports, electronic mail messages, and handwritten notes
(e.g., informal conference records) are some examples of alternative
documentation formats. Agencies should verify documentation standards
within their sites. (see Appendix J – Documentation Standards)

The following sections provide additional information about the lifecycle
model:

Project Screen and Selection
Adapting the Lifecycle
Development Techniques
Commercial-Off-The-Shelf (COTS) Products Based Projects
Quality Reviews
Classic Mistakes in Software Projects

November 2001 Page 2-3 Lifecycle Model

Section 2: Lifecycle Model

Exhibit 2.0-1. Software Lifecycle Phases and Deliverables

November 2001 Page 2-4 Lifecycle Model

Project Initiation

Project Concept Document (PCD)
Project Charter
Project Feasibility

Planning

Project Plan
Software Quality Assurance Plan
Software Configuration Management Plan

Requirements Definition

Requirements Traceability Matrix (draft)
Continuity of Operations Statement/Plan
Data Dictionary (draft)
Software Requirements Specification
Project Test Plan
Acceptance Test Plan (draft)
Project Plan (revised)

Functional Design

Logical Model
Data Dictionary (revised)
Requirements Traceability Matrix (expanded)
Functional Design Document
Project Plan (revised)

System Design

Data Dictionary (expanded)
Physical Model
Integration Test Plan (draft)
System Test Plan (draft)
Requirements Traceability Matrix (expanded)
Conversion Plan
System Design Document
Program Specifications
Programming Standards
Project Plan (revised)

Programming

Production Platform Acquisition Plan
Installation Plan (draft)
Requirements Traceability Matrix (expanded)
Integration Test Plan (final)
System Test Plan (final)
Software Baseline
Transition Plan
Operating Documents (draft)
Training Plan (draft)
Project Plan (revised)

Software Integration & Testing

Integration Test Reports
System Test Report
Operating Documents (final)
Training Plan (final)
Installation Plan (final)
Acceptance Test Plan (final)
Pre-acceptance Checklist
Requirements Traceability Matrix (final)
Maintenance Plan (draft)
Project Plan (revised)

Installation and Acceptance

Installation Test Materials
Customer Training Materials
Acceptance Test Materials
Acceptance Test Report
Acceptance Checklist
Operational System
Operating Documents
Maintenance Plan (final)
Project Plan (final)

Closeout

Administrative Closure
Financial Closure
Project Audit

Emergency Maintenance

Revise all affected documentation

Retirement - Computer System Retirement Guidelines
Note: A project may require other deliverables.

Section 2: Lifecycle Model

Criteria for Selecting a Development Project

November 2001 Page 2-5 Lifecycle Model

Why Criteria are Needed:

Elements of Criteria:

New product development is a gamble, even under the best of
circumstances. At one time it was appropriate to decide whether to go
forward with a development project by "gut feel". Now, however, the
marketplace and competitive situation has gotten so complicated and the
cost of development projects has gotten so expensive that a more
sophisticated means of evaluating and selecting projects is necessary.

You can improve the odds of success by selecting better projects and by
weeding out, as early as possible, those ideas that make little sense to
pursue. Listing and formalizing criteria for the evaluation and selection of
development projects is a way of improving the odds. Seeing how well a
project meets pre-established criteria is an important way of determining
whether a project is worth starting or continuing.

Criteria are a qualitative and quantitative list of attributes that address
marketing, financial, technological, manufacturing and competitive
advantage issues. Well thought out criteria:

1. Provide guidelines that can be used to determine whether a project
should be started.

2. Provide guidelines that can be applied at critical project milestones to
determine whether a project should be continued.

3. Let people know how their ideas will be evaluated and help steer the
types of ideas so that they are more likely to meet the needs of the
company.

The criteria should be circulated to everyone in the company who has
anything to do with new product development.

New product criteria address a number of important issues:

Fit within the company's business and culture
Compatibility with the company's core technologies
Compatibility with the company's marketplace niche
Ability to satisfy a specific customer need
Possibility of achieving major market share
Potential sales and profits
Net Present Value
Time for payback of development costs
Cost of major tooling and machinery
Internal rate of return on the investment
Susceptibility to competitive attack
Fit within the capabilities of existing and contemplated staff
Growth potential of the product line
Possibility of follow-on products
Likelihood of being first in the marketplace with the new product
Possibility of catching the competition by surprise
Location of the market (local, national or international)
Existence of a channel to the marketplace
Potential downside risks of proceeding

Section 2: Lifecycle Model

Criteria for Selecting a Development Project

November 2001 Page 2-6 Lifecycle Model

Elements of Criteria
Continued:

Potential risks of not proceeding
Possible synergistic effect with current product lines
Existence of identified lead customers
Development cost and time
Existence of a product champion
Patentability and trade secrecy
Likelihood that the new product will provide distinct competitive
advantages to the company
Availability of technology
Resources required
Ability to leverage available technology
Urgency and criticality
Uniqueness
Technical merit
Speed of entry into the marketplace
Possibility of creating or dominating a niche market

Obviously, not all of these criteria are important for every company. Some
are more important than others are. It is up to each agency to decide which
of these must be met by a proposed project before it is allowed to go
forward. The agency should divide its list of criteria into subcategories,
those that are absolutely essential for all of its projects and those that are
less important.

Also, different criteria should be met at different stages of development.
During the concept evaluation stage, a project should be required to meet
fewer criteria than would be the case at a later stage of development, when
more significant funds would have to be committed if the project were to go
forward.

Adopted from Dr. Philip A. Himmelfarb, President and Founder of Philip
Adam & Associates.

Section 2: Lifecycle Model

Project Screen and Selection

Description:

The lifecycle model used in this systems development lifecycle can be
applied to software projects of varying sizes. In this model, software projects
are divided into three sizes: large, medium, and small. Each project size uses
the same lifecycle phases. Medium and small projects may compress or
combine phases and required documentation in direct proportion to the size
of the development effort. The major differences between project sizes are
determined by the following items:

 The estimated total labor hours (the level of effort) required to complete

the project.
 The use of cutting edge or existing technology.
 The type and extent of both customer and system interface requirements.
 The project's contribution to, and impact on, the activities carried out by

the customers and other agency organizations.

The requirements, constraints, and risks associated with the project also
influence the determination of project size. The project size and any plans for
adapting the lifecycle model are documented in the Project Plan, which is
reviewed and approved by the system owner and other project stakeholders.

The following subsections provide descriptions of the three project sizes
used in this lifecycle model. Project Screen and Selection, shows the level of
effort and complexity measures used to define the three sizes.

The Project Screen and Selection subsection was adopted from the Project
Management Methodology desk reference guide.

November 2001 Page 2-7 Lifecycle Model

Section 2: Lifecycle Model

Project Screen and Selection

The Project Assessment
Process:

Every project starts with an idea. That idea may be the result of a unique
thought or design, it may respond to a regulatory mandate, it may answer a
call for operational maintenance, or it may be as simple as providing
scheduled updates. In essence, projects are generated for many different
reasons; however, projects warrant special consideration for uniqueness,
importance, cost, priority, and duration of effort. Accordingly, potential
projects, so as not to under estimate their ‘value-add’ and timing, need to be
subjected to an assessment process that will allow the sponsor,
stakeholders, project team, and other interested parties to validate the
potential project benefits and timing.

Because many teams are initiated without regard for need and feasibility, an assessment process that includes
valuation criteria should be pursued in order to ascertain the merit of the project itself. Major component
phases of the assessment process can include, but may not be limited to, the items noted in Figure 1:

Figure 1

Project Assessment Phases

Screening Evaluation Prioritizing Analysis

The Project Assessment
Process Continued:

Screening

Typically, the screening phase consists of collecting data to determine
whether or not the project belongs to a particular agency or organization
and for preparing inputs for the Evaluation Phase. The perceived urgency
of implementing ideas as a project will determine the timing delay in
preparing data for review. This phase of the effort should be a quick and
inexpensive exercise.

Evaluation

The Evaluation Phase builds on information gathered in the Screening
Phase and provides, in greater detail, potential project information that will
be used for evaluation. This information is then used to make such
determinations as whether or not the idea warrants a project effort,
integrates into the agency strategy, fits within current budget constraints,
and/or conflicts with ongoing projects. It will help detail the "protracted"
benefits of the project. This phase may require the inputs of "outside"
experts, the utilization of computational analysis, or it may include the use
of technological forecasting. The results of the Evaluation Phase may
indicate that the idea has reached an acceptable level to be considered a
project. This would lead to the next step of prioritizing the implementation
of this project with regard to the current agency workload.

November 2001 Page 2-8 Lifecycle Model

Section 2: Lifecycle Model

Project Screen and Selection

The Project Assessment
Process Continued:

Prioritizing

In the Prioritizing Phase, each idea (if there is more than one idea or if there
is a comparison with ongoing projects) is weighted and appraised in terms
of its relative strengths and weaknesses. This weighting would determine
not only its individual merit as a project to pursue, but it would indicate a
relative strength compared to ongoing or competing projects. In order to
determine whether to pursue this project, a number of various techniques
may be used. A few of the more generally accepted procedures are:

•

•

•

•

Checklist/Scoring Models – a "spreadsheet" type analysis weighting
various projects.
Cost Benefit Analysis – a comparison of benefits from completing the
project versus the outcomes of not instituting the project (this must be
carefully considered when the benefits are difficult to measure; e.g.,
conducting a training seminar versus installing a "tele-file" system).
Risk Analysis – an analysis of issues created while the potential project
is being conceived. The intent of Risk Analysis is to try and quantify
concerns that could possibly impede project progress and deter
outcome. (A most popular and useful technique used in analysis of a
system is the Failure Modes and Effects Analysis–FMEA.)
Decision Trees (flow networks) – a method for depicting and
facilitating the analysis of problems that involves sequential decisions
and variable outcomes over time.

It is hoped that any, or all of these, techniques will be useful in determining
the relative merit of projects. Summarily, the results of this Prioritizing
Phase will lead to an initial allocation of resources (human, capital,
financial) toward beginning the efforts of the project.

Analysis

Analysis of enterprise considerations defines the final phase of project
assessment selection. If the results of the Evaluation Phase indicate that the
project should replace an ongoing project, then an analysis will need to be
conducted as to how to reallocate resources to the new project while an
ongoing project is temporarily put on hold or perhaps terminated. The
process of going through an Analysis Phase will be used only if projects are
determined that they will be competing for the same resources.

November 2001 Page 2-9 Lifecycle Model

Section 2: Lifecycle Model

Project Screen and Selection

An Assessment Matrix

An Assessment Matrix, as referenced in the Prioritization Phase, provides a method for making decisions among
alternatives based on their key components and benefits. When a senior executive must choose between two or
more options, an assessment aid will provide straightforward, quantitative information that can be easily and quickly
used to support decisions. Figure 2 displays an example of a completed weighting, assessment method that may be
used in conjunction with agency generated criteria (see Figure 3 as an example) in determining relative merits of
projects.

Figure 2

Project Resources Duration Risk Cost Rating
Project New 3 3 5 3 14

Project 1 1 1 1 3 6
Project 2 3 1 3 3 10
Project 3 5 3 3 3 14
Project 4 3 5 2* 5 15

* Arbitrary decision

Figure 3

Project Size Resources Duration Risk Cost
Small = 1 <5 < 3 months No impact < $50K

Medium = 3 < 10 < 6 months Impacts
Divisions

< $250K

Large = 5 > 10 > 6 months Impacts other
Agencies

> $250K

Ranking

A simple Likert ranking scale (1, 3, or 5) can be easily applied to choosing how projects are prioritized and
implemented. The following ranking scale applies to the example above:

A score of 4 – 8 = a small project

A score of 9 – 15 = a medium project
A score of 16 and higher = a large project

Because different Agencies have different internal requirements, it is suggested that each Agency determine
the best methodology for implementing an assessment scheme for their use.

When Not to Formalize a Project Effort

The formalization of project efforts is as unique as there are numbers of projects being undertaken, and agencies
undertaking them. However, it is generally accepted best practice that the establishment of project activities (scope,
plan, WBS, scheduling and other project components as described in this methodology) need not be formalized for
efforts with less than three people whose duration does not exceed one month.

Essentially, it is recommended that an assessment approach be kept flexible enough so that the effort and
results are consistent with the size and complexity of the alternatives being evaluated, life cycle phase, and
level and type of review being supported.

November 2001 Page 2-10 Lifecycle Model

Section 2: Lifecycle Model

Adapting the Lifecycle

Description:

Adaptations:

The systems development lifecycle implements well-defined processes in a
lifecycle model that can be adapted to meet the specific requirements or
constraints of any software project. This section provides guidelines for
adapting the lifecycle processes to fit the characteristics of the project. These
guidelines help ensure that there is a common basis across all software
projects for planning, implementing, tracking, and assuring the quality of the
deliverables.

The lifecycle model has built-in flexibility. All of the phases and activities
can be adapted to any size and scope systems development project. The
lifecycle can be successfully applied to systems development projects,
software maintenance or enhancements, and customization of commercial
software. The lifecycle is appropriate for all types of systems development
applications including client/server, mainframe, emergency maintenance,
enhancements, web development, procurement, and commercial off-the-shelf
(COTS) projects. The project stakeholders or the requirements for reporting
technical results in formal reports may dictate adaptations to the lifecycle.

The lifecycle can be compressed to satisfy the needs of a small project,
expanded to include additional activities or deliverables for a large or
complex project, or supplemented to accommodate additional requirements,
(e.g., security requirements). Any modifications to the lifecycle should be
consistent with the established activities, documentation, and quality
standards included in the lifecycle. Project teams are encouraged to adapt the
lifecycle as long as the fundamental software development objectives are
retained, quality, CMM Level 2 and CMM Level 3 requirements are not
compromised.

The following are some examples of lifecycle adaptations:

 Change the order in which lifecycle phases are performed.

 Schedule phases and activities in concurrent or sequential order.

 Repeat, merge, or eliminate phases, activities, or deliverables.

 Include additional activities, tasks, or deliverables in a phase.

 Change the sequence or implementation of lifecycle activities.

 Change the development schedule of the deliverables.

 Combine or expand activities and the timing of their execution.

The lifecycle forms the foundation for project planning, scheduling, risks
management, and estimation. When a lifecycle phase, activity, or deliverable
is adapted, the change must be identified, described, and justified in the
Project Plan. The Project Plan is developed as a separate document and
includes a description of the systems development lifecycle that is the
organization’s standard process.

November 2001 Page 2-11 Lifecycle Model

Section 2: Lifecycle Model

Adapting the Lifecycle

Adaptations
Continued:

Illustrations:

Exhibit 2.2-1, Adapting the Lifecycle, shows how phases can be combined to
accommodate different size projects and systems development techniques.
Notes are provided throughout the lifecycle phases to identify activities that
have built-in project adaptation strategies. Adaptations should not introduce
an unacceptable level of risk and require the approval of the system owner
and other project stakeholders.
When adapting the lifecycle model, care must be taken to avoid the
following pitfalls:

 Incomplete and inadequate project planning.

 Incomplete and inadequate definition of project objectives and software

requirements.

 Lack of a development lifecycle that is supported by systems

development preferred practices and tools.

 Insufficient time allocated to complete design before coding is started.

 Not defining and meeting criteria for completing one software lifecycle

phase before beginning the next.

 Compressing or eliminating testing activities to maintain an unrealistic

schedule.

The following are illustrations that can be used in the Project Plan to
describe different types of lifecycle adaptations. This illustration shows a
scenario where the Project Feasibility activity will not be conducted in the
Project Initiation Phase:

A Project Feasibility Document will not be performed for this software
project. The need for the product has been documented in several
organizational reports and was included in the fiscal year long-range plans.
The platform for the project is currently used for all applications owned by
this organization. There are no known vendor packages that will satisfy the
functional requirements described by the system owner.

The following illustration shows how deliverables from two different phases
can be combined into one deliverable:

The Functional Design and System Design documents will be combined into
one design document. A Phase Exit will be conducted when the design
document is completed. To reduce the risk associated with combining the
two documents, the project team will develop prototype screens and reports
for review and approval by the system owner/customer(s).

November 2001 Page 2-12 Lifecycle Model

Section 2: Lifecycle Model

Adapting the Lifecycle

Illustrations
Continued:

The following illustration shows how the ten-lifecycle phases can be
compressed into seven phases for a small project:

This project will require 10 staff months of effort to enhance an existing
application. The ten phases in the lifecycle will be combined into six phases
as follows: (1) Project Initiation (2) Planning, (3) Requirements and Design,
(4) Programming and Testing, (5) Installation and Acceptance, and
(6) Project Closeout.

The following deviations will occur for document deliverables:

 A Project Feasibility and Cost Benefit Analysis will not be necessary

due to the restricted software and hardware platform.

 The Requirements Specification will be limited to the statement of

enhancement requirements.

 The Functional Design and System Design documents will be combined

into one design document.

 An amendment package will be developed for the existing Procedures

Manual.

November 2001 Page 2-13 Lifecycle Model

Section 2: Lifecycle Model

Adapting the Lifecycle

Exhibit 2.2-1. Adapting the Lifecycle

Phases Small Medium Large
Planning X X X
Requirements Definition X X
Requirements Definition/Design X
Functional Design X
System Design X
System Design/Programming X
Programming X
Programming/Testing X
Testing X X
Installation & Acceptance X X X
Maintenance & Operations X X X

 LESS MORE

Project Management

ITERATIVE
DEVELOPMENT

Next Function

Rapid Prototype

1

2

Note: Iterative development and rapid prototyping are optional techniques that can be used on any size
project.

1 Each iteration develops working function(s) from integrated program modules.

2 May develop any or all of requirements, system architecture, and system design.

November 2001 Page 2-14 Lifecycle Model

Section 2: Lifecycle Model

Development Techniques

Description:

Segmented
Development:

Spiral
Development:

This section describes some examples of development techniques that can be
used with the SOM Systems Development Lifecycle. The examples include
high-level instructions on how to adapt the lifecycle phases to accommodate
the development technique. Exhibit 2.2-1, Adapting the Lifecycle, shows
how some development techniques can be used with the software lifecycle
model. The examples provided here are not intended to be a comprehensive
list of development techniques.

Segmented development is most often applied to large systems development
projects where the project requirements can be divided into functional
segments. Each segment becomes a separate project and provides a useful
subset of the total capabilities of the full product. This segmentation serves
two purposes: to break a large development effort into manageable pieces for
easier project management and control; and to provide intermediate
deliverables that form the building blocks for the complete product.

The lifecycle processes and activities are applied to each segment. The
overall software objectives are defined, the system architecture is selected
for the overall project, and a Project Plan for development of the first
segment is written and approved by the system owner.

Segments are delivered to the system owner for evaluation or actual
operation. The results of the evaluation or operation are then used to refine
the content of the next segment. The next segment provides additional
capabilities. This process is repeated until the entire software product has
been developed. If significant problems are encountered with a segment, it
may be necessary to reexamine and revise the project objectives, modify the
system architecture, update the overall schedule, or change how the
segments are divided.

Two major advantages of this approach are: the project manager can
demonstrate concrete evidence that the final product will work as specified;
and customers will have access to, and use of, segments or functions prior to
the delivery of the entire software product.

Spiral development repeats the planning, requirements, and functional design
phases in a succession of cycles in which the project's objectives are
clarified, alternatives are defined, risks and constraints are identified, and a
prototype is constructed. The prototype is evaluated and the next cycle is
planned.

The project objectives, alternatives, constraints, and risks are refined based
on this evaluation; then, an improved prototype is constructed. This process
of refinement and prototyping is repeated as many times as necessary to
provide an incrementally firm foundation on which to proceed with the
project.

The lifecycle activities for the Planning, Requirements Definition, and
Functional Design Phases are repeated in each cycle. Once the design is
firm, the lifecycle phases for System Design, Programming, and Integration
and Testing are followed to produce the final software product.

November 2001 Page 2-15 Lifecycle Model

Section 2: Lifecycle Model

Development Techniques

Rapid
Prototyping:

Iterative
Technique:

Rapid Application
Development:

Rapid prototyping can be applied to any systems development lifecycle (e.g.,
segmented, spiral). Rapid prototyping is recommended for software
development that is based on a new technology or evolutionary
requirements.

With the rapid prototyping technique, the most important and critical
software requirements are defined based on current knowledge and
experience. A quick design addressing those requirements is prepared, and a
prototype is coded and tested. The purpose of the prototype is to gain
preliminary information about the total requirements and confidence in the
correctness of the design approach. Characteristics needed in the final
software product, such as efficiency, maintainability, capacity, and
adaptability might be ignored in the prototype.

The prototype is evaluated, preferably with extensive customer participation,
to refine the initial requirements and design. After confidence in the
requirements and design approach is achieved, the final software is
developed. The prototype might be discarded, or a portion of it used to
develop the final product.

The normal systems development documentation requirements are usually
postponed with prototyping efforts. Typically, the project team, project
stakeholders, and system owner agree that the prototype will be replaced
with the actual software product and required support documentation after
proof of the model. The software that replaces the prototype should be
developed using the lifecycle processes and activities.

The iterative technique is normally used to develop software products piece
by piece. Once the system architecture and functional or conceptual design
are defined and approved, system functionality can be divided into logically
related pieces called "drivers."

In iterative fashion, the project team performs system design, code, unit test,
and integration test activities for each driver, thereby delivering a working
function of the product. These working functions or pieces of the software
product are designed to fit together as they are developed. This technique
allows functions to be delivered incrementally for testing so that they can
work in parallel with the project team. It also enables other functional areas,
such as documentation and training, to begin performing their activities
earlier and in a more parallel effort. In addition, the iterative technique
enables progress to be visible earlier, and problems to be contained to a
smaller scope.

With each iterative step of the development effort, the project team performs
the lifecycle processes and activities.

Rapid Application Development (RAD) is a method for developing systems
incrementally and delivering working pieces every 3 to 4 months, rather than
waiting until the entire project is programmed before implementation. Over
the years, many information projects failed because by the time the
implementation took place, the business had changed.

November 2001 Page 2-16 Lifecycle Model

Section 2: Lifecycle Model

Development Techniques

Rapid Application
Development
Continued:

Joint Application
Development:

Object-Oriented
Development:

RAD employs a variety of automated design and development tools,
including Computer-Aided Software Engineering (CASE), fourth-generation
language (4GLs), visual programming, and graphical user interface (GUI)
builders, which get prototypes up and running quickly. RAD focuses on
personnel management and customer involvement as much as on technology.

Joint Application Development (JAD) is a RAD concept that involves
cooperation between the designer of a computer system and the end user to
develop a system that meets the customer’s needs exactly. It complements
other system analysis and design techniques by emphasizing participative
development among system owners, customers, designers, and builders.
During JAD sessions for system design, the system designer will take on the
role of facilitator for possibly several full-day workshops intended to address
different design issues and deliverables.

Object-oriented development focuses on the design of software components
that mimic the real world. A component that adequately mimics the real
world is much more likely to be used and reused. The approach emphasizes
how a system operates, as opposed to analysis, which is concerned with what
a system is capable of doing. One of the most important advantages in using
an object-oriented approach is the ability to reuse components. Traditional
practices surrounding software development often mitigate against reuse.
Short-term goals are stressed because today’s milestones must be achieved
before any thought can be given to milestones that may be months or years
away. Borrowed or reused code is often code that has already been tested,
and in the end, may translate into cost savings. Object-oriented development
may make code reuse much easier but the amount of actual reuse may still
depend on the motivation of the project managers, designers and
programmers involved. Code reuse can also lead to faster software
development. Object-oriented software is easier to maintain because its
structure is inherently decoupled. This usually leads to fewer side effects
when changes have to be made. In addition, object-oriented systems may be
easier to adapt and scale (i.e., large systems can be created by assembling
reusable subsystems).

Typically, the object-oriented process follows an evolutionary spiral that
starts with customer communication, where the problem is defined. The
technical work associated with the process follows the iterative path of
analysis, design, programming, and testing. The fundamental core concepts
in object-oriented design involve the elements of classes, objects, and
attributes. Understanding the definition and relationships of these elements
is crucial in the application of object-oriented technologies.

November 2001 Page 2-17 Lifecycle Model

Section 2: Lifecycle Model

Development Techniques

Object-Oriented
Development
Continued:

Software
Procurement:

Deliverables:

SDLC Reference:

It is recommend that the following object-oriented issues be well understood
in order to form a knowledge base for the analysis, design, testing, and
implementation of software using object-oriented techniques:

 What are the basic concepts and principles that are applicable to object-

oriented thinking?

 How should object-oriented software projects be planned and managed?

 What is object-oriented analysis and how do its various models enable a

software engineer to understand classes, their relationships and
behavior?

 What is a ‘use case’ and how can it be applied to analyze the

requirements of a system?

 How do conventional and object-oriented approaches differ?
 What are the components of an object-oriented design model?

 How are ‘patterns’ used in the creation of an object-oriented design?

 What are the basic concepts and principles that are applicable for testing

of object-oriented software?

 How do testing strategies and test case design methods change when

object-oriented software is considered?

 What technical metrics are available for assessing the quality of object-

oriented software?

Software procurement process is the process by which software is acquired.
The process is defined by the procurement plan, which identifies business
and/or technical requirements development, purchase methodology, budget,
resources for a Joint Evaluation Committee (executive and core team), high-
level testing plan, required approvals, and contracting methods. The software
may be an off-the-shelf package that is a project product, or it may be
testing, quality assurance, operating system, or database management. (see
Project Management Methodology, Planning Phase)

The deliverables described in the SOM systems development lifecycle will
be the same for much of the lifecycle and it is the responsibility of the
project manager to adapt the deliverables accordingly and document
adaptations in the Project Plan.

Planning Phase, provides guidance for preparing a project plan. See the DIT
Web site at: http://www.michigan.gov/dit.

November 2001 Page 2-18 Lifecycle Model

Section 2: Lifecycle Model

Commercial Off-the-Shelf (COTS) Products Based Projects

Description:

SDLC References:

There is a current trend in systems development to make greater use of
Commercial-Off-The-Shelf (COTS) products, that is, to buy a ready-made
system from a software manufacturer rather than developing it in-house from
scratch. This carries with it a sense of getting a system that can do the job, at
a reasonable cost, and getting new function in subsequent releases over time.

A further breakdown of this is located in Appendix I.

Appendix I – Commercial Off-the-Shelf Software.

November 2001 Page 2-19 Lifecycle Model

Section 2: Lifecycle Model

Quality Reviews

Description:

Quality Reviews:

1) Assure that the established

system development and project
management processes and
procedures are being followed;

2) Exposures and risks to the
current project plan are
identified and addressed

Peer Review:

Structured
Walkthrough:

This section describes the quality review and assurance mechanisms that are
used with the systems development lifecycle. The purpose of the quality
reviews is to assure that the established system development and project
management processes and procedures are being followed effectively, and
that exposures and risks to the current project plan are identified and
addressed. The quality reviews facilitate the early detection of problems that
could affect the reliability, maintainability, availability, integrity, safety,
security, or usability of the software product. The quality reviews enhance
the quality of the end deliverables of a project.

The quality reviews are conducted as Peer Reviews, Structured
Walkthroughs, In-Phase Assessments (IPA) and Phase Exits. The quality
review used depends on the deliverable being reviewed, the point of time
within the phase, and the role of the person conducting the review.

A peer review is an informal review of systems development deliverables
including documentation that can be conducted at any time at the discretion
of the developer. The developers “peers”—frequently other developers
working on the same project, perform these informal reviews. Informal
reviews can be held with relatively little preparation and follow up activity.
Review comments are informally collected and the product developer
determines which comments require future action. Peer reviews focus on the
specific content of a product and are geared to help the developer improve
the product.

Some of the deliverables prepared are considered interim deliverables as
they feed into a major deliverable or into another phase. The interim
deliverables are ideal candidates for the peer review; however, all
deliverables can be candidates for peer reviews. Frequent peer review should
be conducted multiple times on a deliverable to ensure that it is free of
defects.

The structured walkthrough is an organized procedure for reviewing and
discussing the technical aspects of systems development deliverables
including documentation. Structured walkthroughs are used to find errors
early in the development process and to improve the quality of the product.
They are very successful in identifying design flaws, errors in analysis or
requirements definition, and validating the accuracy and completeness of
deliverables.

Structured walkthroughs are conducted during all phases of the project
lifecycle. They are used during the development of work products that have
been identified as having deliverables for each phase (see Exhibit 2.0-1),
such as requirements, specifications, design, code, test data, and
documentation. Structured walkthroughs are used after the deliverables have
been completed to verify the correctness and the quality of the finished
product. They should be scheduled in the work breakdown structure
developed for the project plan and can be referred to as code reviews, design
reviews, or inspections. Structured walkthroughs should also be scheduled to
review small, meaningful pieces of work. The progress made in each
lifecycle phase should determine the frequency of the walkthroughs;

November 2001 Page 2-20 Lifecycle Model

Section 2: Lifecycle Model

Quality Reviews

In-Phase
Assessment:

Phase Exit:

1) Secure approval to continue

with project:
- Deliverables of phase;
- Updated project plan;
- All issues, concerns

are closed

2) Document results

however, they may be conducted multiple times on a deliverable to ensure
that it is free of defects.

The In-Phase Assessment (IPA) is a quality review that is conducted by a
reviewer who is typically independent of the project. The reviewer assesses
software development project's processes, work products, and deliverables to
verify adherence to standards and that sound software development and
project management practices are being followed. This is particularly
important when multiple deliverables are developed in a single lifecycle
phase. The reviewer assesses the deliverable and prepares an IPA report
based on the information contained within the deliverable. An IPA does not
require meetings among the involved parties to discuss the deliverable;
however a meeting is often scheduled with the reviewer and the developer
once the IPA report is completed in order to review the findings. Subject
matter experts, such as documentation editors, may be used in addition to the
assessor to further improve the quality of deliverables.

An IPA can be conducted anytime during a phase whenever a deliverable is
stable enough, or near the end of a phase to prepare for phase exit. An IPA
can be conducted for each of the deliverables or one IPA for multiple
deliverables depending on when the work products are made available for
review and the size of the deliverables. IPAs are conducted in all phases of
the project lifecycle and should be scheduled in the work breakdown
structure developed for the project plan. The IPA is described in detail in
Appendix D, In-Phase Assessment Process Guide.

The phase exit ensures that a project conforms to the project management
methodology, the systems development lifecycle, and that the State of
Michigan’s Enterprise IT Standards are identified. The phase exit is
conducted by the project manager with the project stakeholders, e.g., system
owner, customer point of contact, quality assurance point of contact, security
point of contact, architecture and standards point of contact, project
manager’s supervisor, and platform point of contact. It is a high-level
evaluation of all deliverables produced in a lifecycle phase. It is assumed
that each deliverable has undergone several peer reviews and/or structured
walkthroughs as appropriate and a successful IPA was conducted prior to the
phase exit process. The phase exit focuses on the satisfaction of all
requirements for the phase of the lifecycle, rather than the specific content of
each deliverable.

The goal of a phase exit is to secure the concurrence (i.e., approval) of
designated key individuals to continue with the project and to move forward
into the next lifecycle phase. The concurrence is an approval (sign-off) of the
deliverables for the current phase of development including the updated
project plan. It indicates that all qualifications (issues and concerns) have
been closed or have an acceptable plan for resolution. At a phase exit
meeting, the project manager communicates the positions of the key
personnel, along with qualifications raised during the phase exit process,
issues that remain open from the IPA, and the action plan for resolution to
the project team, stakeholders, and other interested meeting participants. The
phase exit meeting is documented in summary form. Only one phase exit for

November 2001 Page 2-21 Lifecycle Model

Section 2: Lifecycle Model

Quality Reviews

Phase Exit
Continued:

SDLC References:

each phase should be necessary to obtain approval assuming all deliverables
have been accepted as identified in the project plan. The phase exit is
described in detail in Appendix E, Phase Exit Process Guide.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 2-22 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

November 2001 Page 2-23 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

Introduction:

Steve McConnel presents in his book Rapid Development a comprehensive
list of "classic mistakes" in software projects (so called because they cause
so predictable bad, yet common, results).

He divides them in four categories:

• People-Related Mistakes
• Process-Related Mistakes
• Product-Related Mistakes
• Technology-Related Mistakes

These mistakes will be discussed as a motivational factor for adopting
effective development practices.

So many people, with such predictable, bad results that they deserve to be
called “classic mistakes” have chosen some ineffective development
practices so often. Most of the mistakes have a seductive appeal. Do you
need to rescue a project that's behind schedule? Add more people! Do you
want to reduce your schedule? Schedule more aggressively! Is one of your
key contributors aggravating the rest of the team? Wait until the end of the
project to fire him! Do you have a rush project to complete? Take whatever
developers are available right now and get started as soon as possible!

Developers, managers, and customers usually have good reasons for making
the decisions they do, and the seductive appeal of the classic mistakes is part
of the reason these mistakes have been made so often. But because they have
been made so many times, their consequences become easy to predict, and
they rarely produce the results that people hope for.

This section enumerates three dozen classic mistakes. I have personally seen
each of these mistakes made at least once, and I've made many of them
myself. You'll recognize many of them from Case Study 3-1.

The common denominator in this list is that you won't necessarily get rapid
development if you avoid the mistake, but you will definitely get slow
development if you don't avoid it.

If some of these mistakes sound familiar, take heart. Many other people have
made the same mistakes, and once you understand their effect on
development speed you can use this list to help with your project planning
and risk management.

Some of the more significant mistakes are discussed in their own sections in
other parts of this book. Others are not discussed further. For ease of
reference, the list has been divided along the development-speed dimensions
of people, process, product, and technology.

November 2001 Page 2-24 Lifecycle Model

http://www.construx.com/stevemcc/rdenum.htm

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

People:

Here are some of the people-related classic mistakes.

#1: Undermined motivation. Study after study has shown that motivation
probably has a larger effect on productivity and quality than any other factor
(Boehm 1981). In Case Study 3-1, management took steps that undermined
morale throughout the project--from giving a hokey pep talk at the beginning
to requiring overtime in the middle and going on a long vacation while the
team worked through the holidays to providing bonuses that work out to less
than a dollar per overtime hour at the end.

#2: Weak personnel. After motivation, either the individual capabilities of
the team members or their relationship as a team probably has the greatest
influence on productivity (Boehm 1981, Lakhanpal 1993). Hiring from the
bottom of the barrel will threaten a rapid development effort. In the case
study, personnel selections were made with an eye toward who could be
hired fastest instead of who would get the most work done over the life of
the project. That practice gets the project off to a quick start but doesn't set it
up for rapid completion.

#3: Uncontrolled problem employees. Failure to deal with problem
personnel also threatens development speed. This is a common problem and
has been well understood at least since Gerald Weinberg published
Psychology of Computer Programming in 1971. Failure to take action to deal
with a problem employee is the most common complaint that team members
have about their leaders (Larson and LaFasto 1989). In Case Study 3-1, the
team knew that Chip was a bad apple, but the team lead didn't do anything
about it. The result--redoing all of Chip's work--was predictable.

#4: Heroics. Some software developers place a high emphasis on project
heroics, thinking that the certain kinds of heroics can be beneficial (Bach
1995). But I think that emphasizing heroics in any form usually does more
harm than good. In the case study, mid-level management placed a higher
premium on can-do attitudes than on steady and consistent progress and
meaningful progress reporting. The result was a pattern of scheduling
brinkmanship in which impending schedule slips weren't detected,
acknowledged, or reported up the management chain until the last minute. A
small development team held an entire company hostage because they
wouldn't admit that they were having trouble meeting their schedule. An
emphasis on heroics encourages extreme risk taking and discourages
cooperation among the many stakeholders in the software-development
process.

Some managers encourage this behavior when they focus too strongly on
can-do attitudes. By elevating can-do attitudes above accurate-and-
sometimes-gloomy status reporting, such project managers undercut their
ability to take corrective action. They don't even know they need to take
corrective action until the damage has been done. As Tom DeMarco says,
can-do attitudes escalate minor setback into true disasters (DeMarco 1995).

November 2001 Page 2-25 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

People Continued:

#5: Adding people to a late project. This is perhaps the most classic of the
classic mistakes. When a project is behind, adding people can take more
productivity away from existing team members than it adds through new
ones. Fred Brooks likened adding people to a late project to pouring gasoline
on a fire (Brooks 1975).

#6: Noisy, crowded offices. Most developers rate their working conditions
as unsatisfactory. About 60 percent report that they are neither sufficiently
quiet nor sufficiently private (DeMarco and Lister 1987). Workers who
occupy quiet, private offices tend to perform significantly better than
workers who occupy noisy, crowded work bays or cubicles. Noisy, crowded
work environments lengthen development schedules.

#7: Friction between developers and customers. Friction between
developers and customers can arise in several ways. Customers may feel that
developers are not cooperative when they refuse to sign up for the
development schedule that the customers want, or when they fail to deliver
on their promises. Developers may feel that customers unreasonably
insisting on unrealistic schedules or requirements changes after requirements
have been baselined. There might simply be personality conflicts between
the two groups.

The primary effect of this friction is poor communication, and the secondary
effects of poor communication include poorly understood requirements, poor
user-interface design, and, in the worst case, customers' refusing to accept
the completed product. On average, friction between customers and software
developers is so severe that both parties consider canceling the project (Jones
1994). Such friction is time-consuming to overcome, and it distracts both
customers and developers from the real work of the project.

#8: Unrealistic expectations. One of the most common causes of friction
between developers and their customers or managers is unrealistic
expectations. In Case Study 3-1, Bill had no reason to think that the Giga-
Quote program could be developed in six months except for the fact that the
company needed it in that amount of time. Mike's failure to correct that
unrealistic expectation was a major source of problems. In other cases,
project managers or developers ask for trouble by getting funding based on
overly optimistic schedule estimates. Sometimes they promise a pie-in-the-
sky feature set. Although unrealistic expectations do not in themselves
lengthen development schedules, they contribute to the perception that
development schedules are too long, and that can be almost as bad. A
Standish Group survey listed realistic expectations as one of the top five
factors needed to ensure the success of an in-house business-software project
(Standish Group 1994).

#9: Lack of effective project sponsorship. High-level project sponsorship
is necessary to support many aspects of rapid development including realistic
planning, change control, and the introduction of new development practices.
Without an effective project sponsor, other high-level personnel in your
organization can force you to accept unrealistic deadlines or make changes
that undermine your project. Australian consultant Rob Thomsett argues that
lack of an effective project sponsor virtually guarantees project failure
(Thomsett 1995).

November 2001 Page 2-26 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

People Continued:

#10: Lack of stakeholder buy-in. All of the major players in a software-
development effort must buy in to the project. That includes the executive
sponsor, team leader, team members, marketing, end-users, customers, and
anyone else who has a stake in it. The close cooperation that occurs only
when you have complete buy-in from all stakeholders allows for precise
coordination of a rapid development effort that is impossible to attain
without good buy-in.

#11: Lack of user input. The Standish Group survey found that the number
one reason that IS projects succeed is because of user involvement (Standish
Group 1994).

#12: Politics placed over substance. Larry Constantine reported on four
teams that had four different kinds of political orientations (Constantine
1995a). "Politicians" specialized in "managing up," concentrating on
relationships with their managers. "Researchers" concentrated on scouting
out and gathering information. "Isolationists" kept to themselves, creating
project boundaries that they kept closed to non-team members. "Generalists"
did a little bit of everything: they tended their relationships with their
managers, performed research and scouting activities, and coordinated with
other teams through the course of their normal workflow. Constantine
reported that initially the political and generalist teams were both well
regarded by top management. But after a year and a half, the political team
was ranked dead last. Putting politics over results is fatal to speed-oriented
development.

#13: Wishful thinking. I am amazed at how many problems in software
development boil down to wishful thinking. How many times have you
heard statements like these:

"None of the team members really believed that they could
complete the project according to the schedule they were given, but
they thought that maybe if everyone worked hard, and nothing went
wrong, and they got a few lucky breaks, they just might be able to
pull it off."

"Our team hasn't done very much work to coordinate the interfaces
among the different parts of the product, but we've all been in good
communication about other things, and the interfaces are relatively
simple, so it'll probably take only a day or two to shake out the
bugs."

"We know that we went with the low-ball contractor on the
database subsystem and it was hard to see how they were going to
complete the work with the staffing levels they specified in their
proposal. They didn't have as much experience as some of the other
contractors, but maybe they can make up in energy what they lack
in experience. They'll probably deliver on time."

"We don't need to show the final round of changes to the prototype
to the customer. I'm sure we know what they want by now."

"The team is saying that it will take an extraordinary effort to meet
the deadline, and they missed their first milestone by a few days,
but I think they can bring this one in on time."

November 2001 Page 2-27 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

People Continued:

Process:

but I think they can bring this one in on time."

Wishful thinking isn't just optimism. It's closing your eyes and hoping
something works when you have no reasonable basis for thinking it will.
Wishful thinking at the beginning of a project leads to big blowups at the end
of a project. It undermines meaningful planning and may be at the root of
more software problems than all other causes combined.

Process-related mistakes slow down projects because they squander people's
talents and efforts. Here are some of the worst process-related mistakes.

#14: Overly optimistic schedules. The challenges faced by someone
building a three-month application are quite different than the challenges
faced by someone building a one-year application. Setting an overly
optimistic schedule sets a project up for failure by underscoping the project,
undermining effective planning, and abbreviating critical upstream
development activities such as requirements analysis and design. It also puts
excessive pressure on developers, which hurts developer morale and
productivity. This was a major source of problems in Case Study 3-1.

#15: Insufficient risk management. Some mistakes have been made often
enough to be considered classics. Others are unique to specific projects. As
with the classic mistakes, if you don't actively manage risks, only one thing
has to go wrong to change your project from a rapid-development project to
a slow-development one. Failure to manage risks is one of the most common
classic mistakes.

#16: Contractor failure. Companies sometimes contract out pieces of a
project when they are too rushed to do the work in-house. But contractors
frequently deliver work that's late, that's of unacceptably low quality, or that
fails to meet specifications (Boehm 1989). Risks such as unstable
requirements or ill-defined interfaces can be magnified when you bring a
contractor into the picture. If the contractor relationship isn't managed
carefully, the use of contractors can slow a project down rather than speed it
up.

#17: Insufficient planning. If you don't plan to achieve rapid development,
you can't expect to achieve it.

#18: Abandonment of planning under pressure. Projects make plans and
then routinely abandon them when they run into schedule trouble (Humphrey
1989). The problem isn't so much in abandoning the plan as in failing to
create a substitute and then falling into code-and-fix mode instead. In Case
Study 3-1, the team abandoned its plan after it missed its first delivery, and
that's typical. The result was that work after that point was uncoordinated
and awkward--to the point that Jill even started working on a project for her
old group part of the time and no one even knew it.

November 2001 Page 2-28 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

Process Continued:

#19: Wasted time during the fuzzy front end. The "fuzzy front end" is the
time before the project starts, the time normally spent in the approval and
budgeting process. It's not uncommon for a project to spend months or years
in the fuzzy front end and then to come out of the gates with an aggressive
schedule. It's much easier and cheaper and less risky to save a few weeks or
months in the fuzzy front end than it is to compress a development schedule
by the same amount.

#20: Shortchanged upstream activities. Projects that are in a hurry try to
cut out nonessential activities, and since requirements analysis, architecture,
and design don't directly produce code, they are easy targets. On one disaster
project that I took over, I asked to see the design. The team lead told me,
"We didn't have time to do a design."
Also known as "jumping into coding," the results of this mistake are all too
predictable. In the case study, a design hack in the bar-chart report was
substituted for quality design work. Before the product could be released, the
hack work had to be thrown out and the higher quality work had to be done
anyway. Projects that skimp on upstream activities typically have to do the
same work downstream at anywhere from 10 to 100 times the cost of doing
it properly in the first place (Fagan 1976; Boehm and Papaccio 1988). If you
can't find the 5 extra hours to do the job right the first time, where are you
going to find the 50 extra hours to do it right later?

#21: Inadequate design. A special case of shortchanging upstream activities
is inadequate design. Rush projects undermine design by not allocating
enough time for it and by creating a pressure-cooker environment that makes
thoughtful consideration of design alternatives difficult. The design
emphasis is on expediency rather than quality, so you tend to need several
ultimately time-consuming design cycles before you finally complete the
system.

#22: Shortchanged quality assurance. Projects that are in a hurry often cut
corners by eliminating design and code reviews, eliminating test planning,
and performing only perfunctory testing. In the case study, design reviews
and code reviews were given short shrift in order to achieve a perceived
schedule advantage. As it turned out, when the project reached its feature-
complete milestone it was still too buggy to release for five more months.
This result is typical. Short-cutting a day of QA activity early in the project
is likely to cost you 3 to 10 days of activity downstream (Jones 1994). This
inefficiency undermines development speed.

#23: Insufficient management controls. In the case study, there were few
management controls in place to provide timely warnings of impending
schedule slips, and the few controls there were in place at the beginning were
abandoned once the project ran into trouble. Before you can keep a project
on track, you have to be able to tell whether it's on track.

#24: Premature or too frequent convergence. Shortly before a product is
scheduled to be released there is a push to prepare the product for release--
improve the product's performance, print final documentation, incorporate
final help-system hooks, polish the installation program, stub out
functionality that's not going to be ready on time, and so on. On rush
projects, there is a tendency to force convergence early. Since it's not

November 2001 Page 2-29 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

Process Continued:

Product:

possible to force the product to converge when desired, some rapid
development projects try to force convergence a half dozen times or more
before they finally succeed. The extra convergence attempts don't benefit the
product. They just waste time and prolong the schedule.

#25: Omitting necessary tasks from estimates. If people don't keep careful
records of previous projects, they forget about the less visible tasks, but
those tasks add up. Omitted effort often adds about 20 to 30 percent to a
development schedule (van Genuchten 1991).

#26: Planning to catch up later. If you're working on a six-month project,
and it takes you three months to meet your two-month milestone, what do
you do? Many projects simply plan to catch up later, but they never do. You
learn more about the product as you build it, including more about what it
will take to build it. That learning needs to be reflected in the schedule.
Another kind of reestimation mistake arises from product changes. If the
product you're building changes, the amount of time you need to build it
changes too. In Case Study 3-1, major requirements changed between the
original proposal and the project start without any corresponding
reestimation of schedule or resources. Piling on new features without
adjusting the schedule guarantees that you will miss your deadline.

#27: Code-like-hell programming. Some organizations think that fast,
loose, all-as-you-go coding is a route to rapid development. If the developers
are sufficiently motivated, they reason, they can overcome any obstacles. For
reasons that will become clear throughout this book, this is far from the
truth. The entrepreneurial model is often a cover for the old code-and-fix
paradigm combined with an ambitious schedule, and that combination
almost never works. It's an example of two wrongs not making a right.

Here are some classic mistakes are related to the way the product is defined.

#28: Requirements gold-plating. Some projects have more requirements
than they need right from the beginning. Performance is stated as a
requirement more often than it needs to be, and that can unnecessarily
lengthen a software schedule. Users tend to be less interested in complex
features than marketing and development are, and complex features add
disproportionately to a development schedule.

#29: Feature creep. Even if you're successful at avoiding requirements
gold-plating, the average project experiences about a 25-percent change in
requirement over its lifetime (Jones 1994). Such a change can produce at
least a 25-percent addition to the software schedule, which can be fatal to a
rapid development project.

#30: Developer gold-plating. Developers are fascinated by new technology
and are sometimes anxious to try out new features of their language or
environment or to create their own implementation of a slick feature they
saw in another product--whether or not it's required in their product. The
effort required to design, implement, test, document, and support features
that are not required lengthens the schedule.

November 2001 Page 2-30 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

Product Continued:

Technology:

#31: Push me, pull me negotiation. One bizarre negotiating ploy occurs
when a manager approves a schedule slip on a project that's progressing
slower than expected and then adds completely new tasks after the schedule
change. The underlying reason for this is hard to fathom because the
manager who approves the schedule slip is implicitly acknowledging that the
schedule was in error. But once the schedule has been corrected, the same
person takes explicit action to make it wrong again. This can't help but
undermine the schedule.

#32: Research-oriented development. Seymour Cray, the designer of the
Cray supercomputers, says that he does not attempt to exceed engineering
limits in more than two areas at a time because the risk of failure is too high
(Gilb 1988). Many software projects could learn a lesson from Cray. If your
project strains the limits of computer science by requiring the creation of
new algorithms or new computing practices, you're not doing software
development; you're doing software research. Software-development
schedules are reasonably predictable; software research schedules are not
even theoretically predictable.
If you have product goals that push the state of the art--algorithms, speed,
memory usage, and so on--you should expect great uncertainty in your
scheduling. If you're pushing the state of the art and you have any other
weaknesses in your project--personnel shortages, personnel weaknesses,
vague requirements, unstable interfaces with outside contractors--you can
throw predictable scheduling out the window. If you want to advance the
state of the art, by all means, do it. But don't expect to do it rapidly!

The remaining classic mistakes have to do with the use and misuse of
modern technology.

#33: Silver-bullet syndrome. In the case study there was too much reliance
on the advertised benefits of previously unused technologies (report
generator, object oriented design, and C++) and too little information about
how well they would do in this particular development environment. When
project teams latch onto a single new methodology or new technology and
expect it to solve their schedule problems, they are inevitably disappointed
(Jones 1994).

#34: Overestimated savings from new tools or methods. Organizations
seldom improve their productivity in giant leaps, no matter how good or how
many new tools or methods they adopt. Benefits of new practices are
partially offset by the learning curves associated with them, and learning to
use new practices to their maximum advantage takes time. New practices
also entail new risks, which you're likely to discover only by using them.
You are more likely to experience slow, steady improvement on the order of
a few percent per project than you are to experience dramatic gains. The
team in Case Study 3-1 should have planned on, at most, a 10-percent gain in
productivity from the use of the new technologies instead of assuming that
they would nearly double their productivity.

A special case of overestimated savings arises when projects reuse code
from previous projects. This can be a very effective approach, but the time
savings is rarely as dramatic as expected.

November 2001 Page 2-31 Lifecycle Model

Section 2: Lifecycle Model

Classic Mistakes in Software Projects

Technology Continued: #35: Switching tools in the middle of a project. This is an old standby that
hardly ever works. Sometimes it can make sense to upgrade incrementally
within the same product line, from version 3 to version 3.1 or sometimes
even to version 4. But the learning curve, rework, and inevitable mistakes
made with a totally new tool usually cancel out any benefit when you're in
the middle of a project.

#36: Lack of automated source-code control. Failure to use automated
source-code control exposes projects to needless risks. Without it, if two
developers are working on the same part of the program, they have to
coordinate their work manually. They might agree to put the latest versions
of each file into a master directory and to check with each other before
copying files into that directory. But someone always overwrites someone
else's work. People develop new code to out-of-date interfaces and then have
to redesign their code when they discover that they were using the wrong
version of the interface. Users report defects that you can't reproduce
because you have no way to recreate the build they were using. On average,
source code changes at a rate of about 10 percent per month, and manual
source-code control can't keep up (Jones 1994).

Exhibit 2-0-3 Summary of Classic Mistakes contains a complete list of
classic mistakes.

Exhibit 2.0-2 Summary of Classic Mistakes
People-Related
Mistakes

Process-Related
Mistakes

Product-Related
Mistakes

Technology-
Related Mistakes

1. Undermined motivation
2. Weak personnel
3. Uncontrolled problem
employees
4. Heroics
5. Adding people to a late
project
6. Noisy, crowded offices
7. Friction between developers
and customers
8. Unrealistic expectations
9. Lack of effective project
sponsorship
10. Lack of stakeholder buy-in
11. Lack of user input
12. Politics placed over
substance
13. Wishful thinking

14. Overly optimistic schedules
16. Insufficient risk management
17. Contractor failure Insufficient
planning
18. Abandonment of planning
under pressure
19. Wasted time during the fuzzy
front end
20. Shortchanged upstream
activities
21. Inadequate design
22. Shortchanged quality assurance
23. Insufficient management
controls
24. Premature or too frequent
convergence
25. Omitting necessary tasks from
estimates
26. Planning to catch up later
27. Code-like-hell programming

28. Requirements gold-
plating
29. Feature creep
30. Developer gold-plating
31. Push me, pull me
negotiation
32. Research-oriented
development

33. Silver-bullet
syndrome
34. Overestimated
savings from new tools
or methods
35. Switching tools in
the middle of a project
36. Lack of automated
source-code control

This material is Copyright © 1996 by Steven C. McConnell. All Rights Reserved.

November 2001 Page 2-32 Lifecycle Model

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 3

PROJECT INITIATION

Section 3: Project Initiation Phase

Table of Contents

Project Initiation .. 3-0

Highlights of Phase .. 3-1
Overview ... 3-2
Transition to Planning Phase ..3-3
Taking Over an Existing Project ..3-4
Beginning a New Project ...3-5
How to Determine Project Status/Health ...3-6

January 2002 Page 3-i Project Initiation Phase

Section 3: Project Initiation Phase

Highlights of Phase

Facilitating Process

Core Process

Project Planning
Phase

Develop
Project Concept

Document

Develop
Project Charter

Develop Project
Description
Statement

Develop Project
Feasibility
Document

January 2002 Page 3-1 Project Initiation Phase

Project Initiation

Forms Utilized

Project Feasibility Document

Section 3: Project Initiation Phase

Overview

Description:

Resources:

This section describes the project initiation activities associated with the
systems development lifecycle. The project initiation phase is the first
phase of the lifecycle. In this phase, the project is initiated by defining the
activities associated with the project. The feasibility of the project is
determined. A project feasibility document is developed. A project
description statement is written. A project concept document is completed.
A project appraisal package is prepared. A project charter document is
written and approvals are obtained.

Approvals must be obtained from a steering committee on all documents in
order to proceed with project.

Project initiation is the conceptual element of project management and
systems development lifecycle. This section describes the basic documents
that must be performed to get a systems development project started.

The purpose of the project initiation phase is to specify what the project
should accomplish.

The project concept, project charter, and project feasibility documents can
be found on the project management methodology Web site at:
http://www.michigan.gov/dit .

January 2002 Page 3-2 Project Initiation Phase

http://www.michigan.gov/dit

Section 3: Project Initiation Phase

Transition to Planning Phase

Description:

The main function of a lifecycle model is to establish the order in which a
project specifies, prototypes, designs, implements, reviews, tests, and
performs its other activities. It establishes the criteria that you use to
determine whether to proceed from one task to the next.

When the system approach is applied to the development of information
system solutions, a multi-step process or cycle emerges. This is frequently
called the system development life cycle (SDLC). Following figure
summarizes what goes on in each phase of the SOM systems development
lifecycle, which includes the steps of (1) project initiation, (2) planning,
(3) requirements definition, (4) functional design, (5) system design,
(6) programming, (7) software integration and testing, (8) installation and
acceptance, (9) project closeout, and (10) emergency maintenance.

All of the activities involved are highly related and interdependent,
Therefore, in actual practice, several developmental activities can occur at
the same time. So, different parts of a development project can be at
different phases of the development cycle. In addition, project may recycle
back to repeat previous phases in order to modify and improve the results of
an activity.

Pr
oj

ec
t I

ni
tia

tio
n

Pl
an

ni
ng

R
eq

ui
re

m
en

ts
 D

ef
in

iti
on

Fu
nc

tio
na

l D
es

ig
n

Sy
st

em
 D

es
ig

n

Pr
og

ra
m

m
in

g

So
ft

w
ar

e
In

te
gr

at
io

n
an

d
T

es
tin

g

In
st

al
la

tio
n

an
d

A
cc

ep
ta

nc
e

Pr
oj

ec
t C

lo
se

ou
t

So
ft

w
ar

e
M

ai
nt

en
an

ce

Business requirement definition process

System technical architecture process

Database design and development process

Customer Interface design and development process

Program design and development process

Testing process

Data converson process

System documentation process

Training process

System implementation/optimization process

System maintenance process

Customer support process

January 2002 Page 3-3 Project Initiation Phase

Section 3: Project Initiation Phase

Taking Over an Existing Project

Become Familiar with Project:

Assume Management
Responsibilities:

a. Get a turnover briefing from the previous project manager.
b. Talk to the manager for the agency/division for business processes

such as personnel management/staffing, financial management (budget
planning, execution, and tracking), understand overhead issues.

c. Determine the current tasking
d. Learn the customer’s detailed requirements, both technical and non-

technical.
e. Determine what upper management expects of you.
f. Become familiar with the players and what their roles and

responsibilities are:
 Internal project groups/staff
 Customer community
 Sponsors
 Contractors
 Other interfacing groups

g. Determine the available internal resources.
 People
 Resources (equipment/software tools)
 Facilities

h. Become familiar with the funding profile.
i. Determine what commitments have been made to/with any of the

project’s interfacing groups, customers, or other stakeholders.
j. Review any existing project plans (e.g., project plan, risk management

plan, software quality assurance plan, configuration management plan,
etc.) and project documentation (requirements specifications, design
documents, test plans, test reports, etc.).

k. Become familiar with the reporting requirements. Learn what
standards and processes are being applied. Determine what the current
issues, politics, and “best practices” are – what is going right, what can
be improved?

l. Become familiar with the metrics that are being collected and how they
are reported and used.

m. Conduct a project status review.

a. Become familiar with the State of Michigan’s Systems Development

Lifecycle (SDLC) and the Project Management Methodology (PMM).
b. Promote teamwork and set expectations

 Have the team, including the project manager, review the SDLC
and PMM documents

 Attend any Project Management courses that will assist in the
Process

c. Evaluate baseline/status and make changes as necessary using the

Project Planning Process.
d. Report to the team and upper management changes resulting from

applying the Project Planning Process.
e. Implement changes while continuing with the current tracking and

oversight process. Review the SDLC and PMM and make changes /
tailor as needed for project visibility and control.

f. Give upper management a full status brief.
g. Manage on-going activities as described in the SDLC and PMM

documents.

January 2002 Page 3-4 Project Initiation Phase

Section 3: Project Initiation Phase

Beginning a New Project

Get Oriented:

Assume Management
Responsibility:

a. Talk to the manager for the agency/division for business processes such
as personnel management/staffing, financial management (budget planning,
execution, and tracking), understand overhead issues.
b. Identify the sponsor’s tasking
c. Manage the customer’s detailed requirements, both technical and non-

technical.
d. Know what upper management expectations are.
e. Determine if there are any current stakeholders. If so, what are their

roles and responsibilities?
 Support groups such as contracts, QA, CM, and documentation

support
 Potential customer community
 Contractors
 Other interfacing groups

f. Determine required internal resources.
 People
 Resources (equipment/software tools)
 Facilities

g. Determine the commitments that have been made to/with any of the
players.

h. Become familiar with the reporting requirements. Establish standards
and processes that are to be applied.

a. Become familiar with the State of Michigan’s Systems Development

Lifecycle (SDLC) and the Project Management Methodology (PMM).
b. Tailor SDLC and PMM to meet project goals.
c. Acquire necessary software tools.
d. Equip spaces with necessary hardware and software, furnishings
e. Promote teamwork and set expectations.

 Have the team, including the project manager, review the SDLC
and PMM documents

 Attend any Project Management courses that will assist in the
Process

f. Give upper management periodic (e.g., monthly) full status briefs.
g. Manage on-going activities as described in the SDLC and PMM

documents.

January 2002 Page 3-5 Project Initiation Phase

Section 3: Project Initiation Phase

How to Determine Project Status/Health

Description:

Questions to Determine
Project Status/Health:

Troubleshooting and
Problem Avoidance:

Systems Development Lifecycle
Summaries:

This section has been developed to assist software project managers and
upper-level executives in the management of software projects. The
objective is to guide managers in the proper supervision practices that will
result in the delivery of quality products and services within the desired
schedule and budget. With these goals in mind, this section includes the
following:

 Questions a manager should ask to determine the status and health of a
software project

 Characteristics of common software project problems and how to
troubleshoot or (preferably) avoid them

 Brief summaries of essential SDLC processes
 Checklists to ensure successful completion of the phases of the

software development effort
 Guidelines for project reviews and meetings, and checklists for the

major management reviews)
 Metrics that managers use to measure the status of software projects

and the software processes used

What are the vision, mission, goals, and objectives of the project?
How do you plan the activities on the project?
How do you know you are within budget & schedule?
What are the risks on this project?
How are the changes to the software handled?
How do you ensure a quality product?
How do you manage requirements?
How do you know the sponsor and user is satisfied with our work?
What training have the contractor and Government employees on the
project had to do their tasks?
How do you perform contractor management /monitoring (if applicable)?
How do you estimate software?

Once you have asked questions to determine the project status and health,
you might realize that you are in trouble. This section will help you to
troubleshoot your problems. This section also will help you to avoid the
problem later in your project or during your next project.

Purpose: This section is intended to provide the manager with a quick
reference about the systems development lifecycle process.

Definition: Process - a particular method of doing something, generally
involving a number of steps or operations. Webster’s World
Dictionary

Each lifecycle is organized for easy reference as follows:

Project Initiation Software Integration and Testing
Planning Installation and Acceptance
Requirements Definition Emergency Maintenance
Functional Design Appendix
Systems Design
Programming

January 2002 Page 3-6 Project Initiation Phase

Section 3: Project Initiation Phase

How to Determine Project Status/Health

Checklists and Templates:

Project Reviews:

To provide a manager with an overview checklist or template of the
activities performed by the Development Team during the initiation of a
software development effort.

The checklists and templates are offered as guidelines for the activities to
be covered during different phases of a software life cycle.

Note: These checklists and templates should be tailored for your specific
project!

Purpose: To provide immediate technical feedback (including open issues
and defects) to the developers to help them improve the product. These
reviews deal only with technical issues. These reviews also provide
feedback to management on the actual technical status of the project.

Prelim
I’face
Spec.

Plan

Prelim
Reqts.
Spec.

status

risks

issues

concerns

questionsPeer
Review

resolve defects

Peer
Review

resolve defects

Management
Review

(software
design
review)

Peer
Review

resolve defects

January 2002 Page 3-7 Project Initiation Phase

Section 3: Project Initiation Phase

How to Determine Project Status/Health

Metrics:

Goal Based Measurements:

Guidelines on Using Metrics:

Managers need the right information to make informed decisions. Used
properly, metrics are a valuable source of that information. An old adage
proffers that “you can’t manage what you can’t measure.”
(note: the words “measurement” and “metric” are used synonymously)

Managers should choose, collect, track, analyze, and make decisions based
on measures that will show progress toward that manager’s needs.

Measures should be chosen based on the goals the manager needs to track.
Managers should be tracking progress to achieve the development goals of
the project:

 Achieve the systems development lifecycle and project
management capability defined through CMM Level 3 milestone.

 Produce quality software in shorter development cycles
 Reduce the cost of producing software throughout the life cycle
 Rapidly introduce new technology into the product and the

software development process
 Integrate software across traditional system boundaries to provide

a composite set of capabilities to the end user
 Continuously improve customer satisfaction

Managers are concerned that Agency goals are being met by tracking that:

 All projects have met the Sponsor’s needs
 All projects have stable, educated staffs
 All projects have adequate resources
 All projects are contributing to the development goals
 All projects are improving their performance

Project managers should use measures that will relay information that the
manager and the project has:

 Informed sponsors
 Realistic planning and budgeting
 Objective project insight
 Requirements stability
 Adequate staffing and computer resources
 On-target cost and schedule performance
 High Product Quality
 Contributions to the development goals
 Improved performance

Advice on implementing a metrics program suggests that a manager:

 Start small and only collect a few of the most relevant metrics first.
 Have a reason for the metric. For instance, analyzing the increased

amount of sick leave, overtime, or turnover of project personnel over
time may show a trend toward increased low morale, burnout, stress,
and negative schedule impacts. A low number of customer complaints
may indicate good, and open, communication between the developer,
sponsor, and customer. Know when you are encountering identified
project risks.

January 2002 Page 3-8 Project Initiation Phase

Section 3: Project Initiation Phase

How to Determine Project Status/Health

Guidelines on Using
Metrics (cont):

Project Metrics:

 Use the metrics collected. Project personnel must easily see the reason
for the metric being collected, they must see the manager using the
metrics for improvement of their project. History has shown that
project personnel will not willingly provide metrics that have no
apparent use.

 Collect similar metrics across projects to show larger trends within a
Agency, Division, or organization. This also allows easier transfer of
personnel among projects as expectations of them remain constant.

 Ask contractors for metrics via their status report, such as a task order
log; progress reports, vouchers, and deliverables tracking; planned vs.
actuals for staffing by skill levels, hours, dollars, schedules, and size;
and tracking of open vs. closed action items, issues, and problems.

 Don’t use metrics to measure individuals, use metrics to measure
progress and performance of your project.

Management of software projects involves tracking and reviewing the
software accomplishments and results against the plan and taking corrective
action as necessary. These actions may include revising the software
development plan to reflect the actual accomplishments, re-planning the
remaining work, and/or taking actions to improve the performance of the
project. The purpose of software project tracking and oversight is to
establish adequate visibility into actual progress so that management can
take effective actions when the software project’s performance deviates
significantly from the software plans.

The goals of software project tracking and oversight are:
 Actual results and performances are tracked against the software plans
 Corrective actions are taken and managed to closure when actual results

and performance deviate significantly from the software plans
 Changes to software commitments are agreed to by the affected groups

and individuals.

A sample measurement plan is proposed below. Additional information
about project status / health is available on the Research and Policy Web
Site at: http://www.michigan.gov/dit .

January 2002 Page 3-9 Project Initiation Phase

http://www.michigan.gov/dit

Section 3: Project Initiation Phase

How to Determine Project Status/Health

Project

Development
Team

Division a
Sponso

M01

Measure-
ment
 Plan

January 2002 Pag

Agency

nd
r

M03,
M04,
M05

M06

CIO

e 3-
M01, M02,
M03, M04
10 Project Initiation Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 4

PLANNING PHASE

Section 4: Planning Phase

Table of Contents

Planning .. 4-0

Highlights of Phase .. 4-1
Overview ... 4-2
SDLC and PMM .. 4-4
Additional SDLC Planning Activities .. 4-5
Establish Communications with Plan .. 4-6
Develop Project Plan ... 4-7
Develop Software Quality Assurance Plan .. 4-9
Develop Configuration Management Plan .. 4-12
Investigate Software Alternatives ... 4-15
Investigate Hardware Alternatives .. 4-16
Formulate Platform Options ... 4-17
Conduct Project Reviews .. 4-18
Application Security Diagnostic Tool ... 4-19

January 2002 Page 4-i Planning Phase

Section 4: Planning Phase

Highlights of Phase

Facilitating Processes

Core Processes

Requirements
Definition

PhaseProject
Plan

Objectives
and

Scope

W ork
Breakdown
Structure

Organizational
Breakdown
Structure

Activity
Definition

and
Sequencing

Resource
Planning

Budget
Planning

Project
Schedule

Development

Facilitating
Processes

Cost
Benefit

Analysis

Procurement
Planning

Communications
Planning

Risk
Planning

Configuration
Management

Planning

Quality
Planning

Planning Phase

Forms Utilized

Project Plan Format Template Procurement Plan Template
Project Objectives and Scope Quality Plan Template
Work Breakdown Structure Communications Plan Template
Cost Benefit Analysis Template Project Status Report
Resource Plan Template Configuration Management Plan
Software Quality Assurance Checklist Software Configuration Mgt. Checklist
Risk Plan Template IT Project Budget Estimate
Project Planning Checklist E-government Application Security Diagnostic Tool
Software Project Tracking Checklist

January 2002 Page 4-1 Planning Phase

Section 4: Planning Phase

Overview

Description:

1) Identify system requirements;
2) Define project objectives and
 scope;
3) Estimate high-level project and

functional requirements;
4) Develop project plan, software

quality assurance plan and
software configuration
management plan

The Planning phase is the second phase in the systems development
lifecycle. In this phase, the system requirements are identified, the
customers' environment is analyzed, the project objectives and scope are
defined, the high-level project and functional requirements are estimated,
and the Project Plan, Risk Plan, Communications Plan, Budget for Project,
Software Quality Assurance Plan and Software Configuration Management
Plan are developed and approved.

The activities are performed to define and plan all aspects of the project and
its work. Many of these initial planning activities are incorporated within
the overall process.

Project planning applies to all projects regardless of their size. Planning
involves selecting the strategies, policies, and procedures for achieving the
objectives and goals of the project. Planning is deciding, in advance, what to
do, how to do it, when to do it, where to do it, and who is going to do it.

The requirements identified in project related materials, e.g., a feasibility
document, are the primary inputs to the Project Plan. The level of detail will
vary depending on project size. The preparation of the Project Plan and
related materials involve several critical planning issues such as the
identification of preliminary requirements; staff, schedule, and cost
estimates; technical and managerial approaches that will be used; and
assessment of potential risks associated with the project. This information
forms the foundation for all subsequent planning activities.

During this phase, the system owner and customers are interviewed to:
identify their business needs and expectations for the product; gain a
common understanding of the task assignment; and determine how the
project supports the agency and organizational missions and long-range
information resource management plans. The system owner is the
organizational unit that is funding the project, and customers are the
resources who will use the product.

In this phase, the project team should be focused on identifying what the
project will automate, and whether developing an automated solution makes
sense from business, cost, and technical perspectives. If the project is
feasible, then time, cost, and resource estimates must be formulated for the
project, and risk factors must be assessed. It is important for the project team
to work closely with representatives from all functional areas that will be
involved in providing resources, information, or support services for the
project. The information that is gathered in this phase is used to plan and
manage the project throughout its lifecycle.

This phase involves development of a Software Configuration Management
Plan to track and control deliverables and a Software Quality Assurance Plan
to assure the production and operation of high quality products on schedule,
within budget, and within the specification of requirements (constraints)
specified by the system owner and customer.

January 2002 Page 4-2 Planning Phase

Section 4: Planning Phase

Overview

Review Process:

SDLC References:

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and Section 2 Lifecycle Model. The time and
resources needed to conduct the quality reviews should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model, Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 4-3 Planning Phase

Section 4: Planning Phase

SDLC and PMM

Description:

This section describes the project planning activities associated with the
systems development lifecycle. The planning phase is performed once the
project concept document, project charter and feasibility document have
been met and the customer has accepted the project’s product.

The systems development lifecycle recommends following the planning
phase and the associated checklists and templates from the Project
Management Methodology. These can be found on the Web site at:
http://www.michigan.gov/dit .

January 2002 Page 4-4 Planning Phase

http://www.michigan.gov/dit

Section 4: Planning Phase

Additional SDLC Planning Activities

Responsibility:

Description:

1) Determine feasibility of

successfully developing and
implementing the project;

2) Review software and hardware
alternatives;

3) Make “go” or “no go”
decision;

4) Conduct research;
5) Complete project feasibility

Sample
Questions:

Deliverables:

Review Process:

Tasks:

Project Manager/Team

In addition to the Project Management Methodology (PMM) activities, the
feasibility of successfully developing and implementing the project is
determined. Software and hardware alternatives are reviewed and used to
formulate preliminary platform options. Project feasibility leads to a "go" or
"no go" decision about the project. Determining project feasibility is an
interactive process of collecting and analyzing data and searching for cost-
effective, viable technical solutions.

Use the project objectives, scope, and high-level requirements as the basis
for determining project feasibility. Work with the customer organization and
functional area representatives to address technical issues and risks. Conduct
research and investigate documents and other resources. When determining
project feasibility, a brief feasibility review may be all that is required;
however, when a proposed solution is mandated to define risks and
challenges to successfully complete a project, an in depth project feasibility
with a detailed analysis of benefits and costs may be required.

Note: Feasibility may not be an issue for some small software development
projects. A Feasibility Review is not required when feasibility is obvious.

The following is a list of sample questions that can be used to help determine
the feasibility of a project:

 Can the customer’s needs/problems best be satisfied with a manual

process, automated process, or combination?
 Is it cost-effective to develop an automated process?
 Is the scope of the project feasible within time, resource, and hardware

and software constraints and limitations?
 Is there at least one technically feasible automated solution for the

project?
- If a project is well defined and has no automation issues, a single

straightforward automated solution may sufficiently demonstrate
cost and technical feasibility.

- Where automation issues have been identified, technical
alternatives should be associated with each proposed solution.

Refer to each task for applicable deliverables.

Refer to each task for applicable review processes.

The following tasks are involved in determining project feasibility:

Investigate Software Alternatives
Investigate Hardware Alternatives
Formulate Platform Options
Conduct Feasibility Review (PMM)
Conduct Cost Benefit Analysis (PMM)
Conduct Project Feasibility (PMM)

January 2002 Page 4-5 Planning Phase

Section 4: Planning Phase

Establish Communication With Plan

Responsibility:

Description:

1) Profile software project;
2) Complete project planning

questionnaire;
3) List all functional areas;
4) Send each points-of-contact list;
5) Request information from

recipients

SDLC Reference:

Deliverables:

Review Process:

Project Planning Questionnaire:

Project Manager

Early contact with the functional areas (e.g., operations, security, finance,
documentation, oversight activities, etc.) that will provide input to, or
support for, the project is necessary for developing accurate estimates of the
project scope, cost, resources, and schedule. Representatives of these
functional areas should be
involved in all phases of the project lifecycle and are participants in the
Phase Exit process.

Develop a brief profile about the software project. Provide enough
information so that the points-of-contact in each functional area will be able
to estimate support requirements and resource allocations for the project. A
sample project planning questionnaire that can be used for creating the
project profile is provided at the end
of this section.

Develop a list of all functional areas and points-of-contact who will provide
input to, or support the project. Send each point-of-contact the project profile
and request input from all recipients.

Note: This activity is not necessary for small software development projects
that do not require input from other functional areas.

Information on the identification of functional areas can be found in
Appendix E, Phase Exit Process Guide, the Project Plan templates and the
Project Planning Questionnaire can be found on the Research and Policy
Web site at: http://www.michigan.gov/dit.

Place a copy of the project profile in the Project Notebook. Update the
project profile as needed to maintain an accurate description of the software
product. Keep the list of functional area contacts current and maintain a copy
in the Project Notebook and the Project Plan. Use this list as the starting
point when functional areas need to be contacted about involvement in
project activities such as Phase Exits.

A peer review of the Project Planning Questionnaire is optional; however, it
is encouraged as it may provide helpful insight.

Enable project teams (immediate and extended) to be cognizant of the
disparate planning activities which can affect project outcome. Provide early
notification to the stakeholders that a new project may involve their area, and
information to help plan resource estimates and identify risks. See project
questionnaire on the Research and Policy Web site at:
http://www.michigan.gov/dit.

January 2002 Page 4-6 Planning Phase

http://www.michigan.gov/dit

Section 4: Planning Phase

Develop Project Plan

Responsibility:

Description:

Project Manager

The purpose of the Project Plan (sometimes called a Software Development
Plan) is to establish reasonable plans for performing the systems
development activities
and for managing and tracking the software project. The following project
management activities and lifecycle activities described in this phase provide
input for the Project Plan. The project management activities are initiated in
the early phases of, and in parallel with the overall project planning:

 Define the management approach for the project including project

tracking and oversight activities.

 Formulate the technical approach for the project.

 Determine the project standards to be used in developing the plan, e.g.,

enterprise standards, project standards, approved statements of work,
etc., and determine the selected procedures, methods and project
standards for developing and maintaining software.

 Collect the information needed to develop the project estimates and

assess their reasonableness.

 Prepare an estimate of capacity requirements for the projects systems

development facilities and support tools. Estimates of capacity
requirements for facilities and support tools that are based on the size
estimates of the deliverables and other characteristics. Examples of
development facilities and support tools include:

- Development computers and peripherals
- Test computers and peripherals
- Target computer environment
- Other support software

Responsibilities are assigned and commitments are negotiated to procure or
develop these facilities and support tools. The support efforts are budgeted
and agreements (charters) are documented. All effected groups review plans.

 Establish the project development team, i.e., quality assurance,

configuration management and documentation support, and coordinate
and negotiate Plans with the project team.

 Establish the project schedule, i.e., a lifecycle with predefined phases of

manageable size is defined.

The Project Plan is managed and controlled. The plan is reviewed by:

 Project Manager
 Project Software Manager
 Other Software Managers
 Other affected groups

January 2002 Page 4-7 Planning Phase

Section 4: Planning Phase

Develop Project Plan

SDLC Reference:

Resources:

Deliverables:

Review Process:

Tasks:

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The lifecycle phases documented in the
plan can be consolidated for small projects.

Section 2 Lifecycle Model, 2.2 Adapting the Lifecycle, discusses lifecycle
issues in relation to developing a Project Plan.

The following resources are available to assist with the development of a
Project Plan:

 A Project Plan Document that provides a plan for a fictitious project

 Several project models were created in Microsoft Project 98 and NIKU

to support the development of the project schedule. The project models
provide detailed work breakdown structures for (1) large project model,
(2) software procurement model, (3) static web page model. (4)
internet/intranet development and many more.

The Institute of Electrical and Electronics Engineers (IEEE) Standard for
Software Project Management Plans (Std 1058.1-1987) also provides
guidance on developing project plans.

Develop a Project Plan that provides detail for the Planning and
Requirements Definition Phases and high-level information for the other
lifecycle phases. At the conclusion of each phase, the Project Plan will be
reviewed to determine if the project estimates for resources, cost, and
schedule need to be revised for either the current phase or subsequent
phases. The software planning data shall be managed and controlled. In
addition, the Project Plan will be expanded to provide detailed estimates of
resources, costs, and hours for the next phase.

Some of the critical elements of a Project Plan include:

 Project Overview including list of deliverables
 Project Organization including organizational structure, project

responsibilities, and process model
 Management Process including assumptions, dependencies, and

constraints; risk management; tracking and oversight, and staff planning
 Technical Approach including development lifecycle, other methods,

tools, techniques, project documentation, and support functions
 Work Packages, Schedule and Budget including resource requirements,

budget allocations, schedule, and work breakdown structures

Conduct a structured walkthrough to ensure that the Project Plan reflects the
project objectives and scope; identifies and mitigates project risks, and
adequately estimates the project resources, costs, and schedule. The software
project manager and other affected groups should review the Project Plan.

The following tasks are involved in developing the project plan:

January 2002 Page 4-8 Planning Phase

Section 4: Planning Phase

Develop Software Quality Assurance Plan

Responsibility:

Description:

Project Manager and Quality Assurance Manager

The software quality assurance program involves the reviewing and auditing
of the software products and activities to verify that they comply with the
applicable
procedures and standards and to assure the production and operation of high
quality products according to stated requirements. The results of these
reviews and audits provide the project manager and other appropriate
managers with appropriate visibility into the processes used.

The software quality assurance program is initiated at the beginning of a
project and is conducted throughout the systems development lifecycle. The
software quality assurance program is the joint responsibility of the project
manager and quality assurance manager with direct support and involvement
from the quality assurance representatives assigned to the project. Software
Quality Assurance includes the following activities:

 Preparation of a Software Quality Assurance Plan for the project

according to a documented procedure and coordinated with the
designated project team members.

 Establishment of a reporting channel regarding software quality

assurance.

 Allocation of adequate resources and funding to maintain and perform

software quality assurance activities.

 Provision of formal training for the software quality assurance

representatives to perform their activities.

 Provision of orientation training in the role, responsibilities, authority

and value of software quality assurance to project software developers.

 Performance of software quality assurance activities in accordance with

the Software Quality Assurance Plan.

 Participation by software quality assurance representatives in the

preparation and review of the Projects Plan, standards, and procedures.

 Reviews by the software quality assurance representatives of the

systems development activities to verify compliance.

 Audits by software quality assurance representatives of designated

deliverables to verify compliance.

 Periodic reports by software quality assurance representatives of the

results and deliverables of software quality assurance activities to the
project team.

 Documentation of deviations identified in the project activities and

January 2002 Page 4-9 Planning Phase

Section 4: Planning Phase

Develop Software Quality Assurance Plan

Deliverables:

deliverables and handled in accordance with a documented procedure.

 Use of measurement and analysis techniques to determine the cost and

schedule status of the software quality assurance activities.

 Periodic reviews by independent software quality assurance

representatives of the activities and software deliverables of the projects
software quality assurance program.

Software quality assurance personnel work with the project manager during
early phases to establish plans, standards, and procedures that will add value
to the
software product and satisfy the constraints of the project and the
organization’s policies. By participating in establishing software quality
deliverables, e.g., the plans, standards, and procedures, the software quality
assurance personnel help ensure the deliverables fit the projects needs and
will be usable for performing reviews and audits throughout the project
lifecycle.

Compliance issues are first addressed with the project manager and resolved
there if possible. For issues not resolvable by the software quality assurance
representative and project manager, the issue is escalated to an appropriate
level of management for resolution .

The quality assurance manager or designated representative assists the
project manager with the development of a plan that clearly defines the
project's quality assurance policies and procedures. The Software Quality
Assurance Plan addresses the following types of activities:

 Establishing the applicability of published standards and procedures and

determining the scope of the project standards and procedures.

 Monitoring the software product and enforcement of compliance with

all standards and procedures to facilitate the early detection of problems
that could affect the reliability, maintainability, availability, integrity,
safety, security, or usability of the software product.

 Inspecting hardware and software items and documenting for

compliance to specifications and standards before their release to the test
team or the system owner.

 Certifying deliverable items before their release to the system owner as

compliant with all provisions of the project statement of work and
contract, if applicable.

 Coordinating the project's technical problem reporting system and

corrective action program to assure resolution of observed
discrepancies.

 Measuring the quantitative and auditable progress of the project based

on cost, schedule status, and quality status.

 Assuring consistent management and technical practices and the

January 2002 Page 4-10 Planning Phase

Section 4: Planning Phase

Develop Software Quality Assurance Plan

Review Process:

Resources:

integrity of the software product.

Provide enough information in the plan so that compliance can be monitored
by means of project records. Whenever feasible, acquire automated tools to
check compliance with project standards. For example, many CASE
(computer-aided software engineering) tools can check compliance with
standards, while checking the validity and consistency of requirements,
design, and logic diagrams.

Conduct a structured walkthrough to validate that the quality assurance
policies and procedures are appropriate and adequate for the project.

The following resources are available to assist with the development of a
Software Quality Assurance Plan on Web site at:
http://www.michigan.gov/dit

 Software Quality Assurance Plan Template
 Software Quality Assurance Plan Example

The Institute of Electrical and Electronics Engineers (IEEE)Standard for
Software Quality Assurance Plans (Std 730-1989) provides guidance on
developing these plans.

January 2002 Page 4-11 Planning Phase

Section 4: Planning Phase

Develop Software Configuration Management Plan

Responsibility:

Description:

Deliverables:

Project Manager or Software Configuration Manager

Software configuration management (SCM) is a set of procedures used to
control changes to the project during all phases of the software lifecycle. The
goals of configuration management is to identify the configuration of the
software (i.e., software deliverables and their descriptions) at given points in
time, to systematically control changes to the configuration, and to maintain
the integrity and traceability of the configuration throughout the software
lifecycle.

Software configuration management includes the following activities:

 A Software Configuration Management Plan is prepared for each

software project according to a documented procedure and is
coordinated with affected groups and individuals.

 A documented and approved software configuration management plan is
used as the basis for performing the software configuration management
activities.

 Authority for managing the project’s software baselines is established
(e.g. Software Configuration Control Board - SCCB).

 A configuration management library system is established as a
repository for the software baselines.

 Software deliverables are identified and placed under configuration
control management.

 Change requests and problem reports for all software items/units are
initiated, recorded, reviewed, approved, and tracked according to a
documented procedure.

 Changes to baselines are controlled according to a documented
procedure.

 Products from the software baseline library are created and their release
is controlled according to a documented procedure.

 Status of software items/units is recorded according to a documented
procedure.

 Standard reports documenting the software configuration management
activities and the contents of the software baseline are developed and
made available to affected groups and individuals.

 Software baseline audits are conducted according to a documented
procedure.

The deliverables placed under software configuration management include
the software products that are delivered to the customer (e.g., the software
requirements document and the source code) and the items that are identified
with or required to create these software products (e.g., the compiler). A
software baseline library is established containing the software baselines of
the configuration items as they are developed. Changes to baselines and the
release of software products built from the software baseline library are
systematically controlled via the change control and configuration auditing
functions of software configuration management.

The Software Configuration Manager (or the individual assigned software
configuration responsibilities) is responsible for routine evaluation of the
software product. The Software Configuration Manager controls changes
that are introduced into the software product environment. The SCM

January 2002 Page 4-12 Planning Phase

Section 4: Planning Phase

Develop Software Configuration Management Plan

Deliverables
Continued:

manager is responsible for the processes necessary to correct faults in the
environment and
software product. The SCM manager is not responsible for any overall
project deadlines or management issues.

A Software Configuration Management Plan that defines the configuration
management policies and procedures is required for each software project.
The plan is developed early in the lifecycle to ensure the control of changes
as soon as the project requirements are approved and baselined. In this
phase, the plan addresses activities that are platform independent, such as
identifying the items that will be placed under configuration management.
As the project progresses through the lifecycle phases, the plan is expanded
to reflect platform specific activities.

The Software Configuration Management Plan addresses the following types
of responsibilities and activities:

 Defining the required software configuration management policy and

procedures.

 Maintaining all documents in a central library where they can be

accessed with ease.

 Receiving unit test and integrated software builds and related

documentation from the developer.

 Performing version control procedures on unit and integrated software

builds received from the developer.

 Packaging tested unit or integrated build for return to developer or

production as required.

 Shipping approved unit or integrated build to production as required.

 Maintaining an archive of project related correspondence between

members of the group.

 Overseeing the release and subsequent distribution of configuration

items.

Provide enough information in the plan so that compliance can be monitored
by means of project records. Whenever feasible, acquire automated Software
Configuration Management tools to check compliance with project
standards, the validity and consistency of software product design,
requirements and system performance.

Based on the complexity of the project and the anticipated volume of
changes, a Software Configuration Management Plan can be developed for a
specific project, an existing plan can be modified to suit the requirements of
a project, or a plan can be developed to manage all of the projects supporting
a particular system owner's organization. Place a copy of the Software
Configuration Management Plan in the Project Notebook.

January 2002 Page 4-13 Planning Phase

Section 4: Planning Phase

Develop Software Configuration Management Plan

Review Process:

Resources:

Conduct structured walkthroughs to validate that the configuration
management approach, the configuration identification, change control,
status accounting, and auditing procedures are appropriate for the project.

Software Configuration Management Plans and a template are available on
the Research and Policy Web site at: http://www.michigan.gov/dit .

The Institute of Electrical and Electronics Engineers (IEEE)Standard for
Software Configuration Management Plans (Std 828-1990) provides
guidance on developing these plans.

January 2002 Page 4-14 Planning Phase

http://www.michigan.gov/dit

Section 4: Planning Phase

Investigate Software Alternatives

Description:

1) Investigate software

availability;
2) Investigate software

alternatives;
3) Build versus Buy

Software
Alternatives:

When the software to be used for the project has not been predetermined by
the system owner's existing computing environment, software available
within the Agency and the commercial marketplace should be investigated.
In the Planning Phase, the investigation of software alternatives is geared to
determining project feasibility.

Unless the cost effectiveness of developing custom-built software to meet
mission needs is clear and documented, all sources of reusable code,
applications, and commercial-off-the-shelf (COTS) software must be
investigated on a site and Agency-wide basis prior to making a decision to
custom-build code for the project. This practice ensures the most cost-
effective and efficient use of resources, and will decrease the number of
duplicative and overlapping software systems. The choice to develop a
customized application should be balanced against the availability of other
solutions; and the project cost, resources, and time constraints.

The following is a list of software alternatives that should be considered:

 Adapt existing software in use within the agency.
 Adapt existing software in use within other government agencies.
 Adapt mainframe or minicomputer source code obtained from Agency

repositories.
 Purchase commercial-off-the-shelf (COTS) software.
 Reuse existing modules of code.
 Adapt reusable code to fit the new application.
 Develop a custom-built software product.

Note: Medium and small software development efforts are often restricted to
the system owner's existing software. This should not preclude the potential
cost savings of reengineering existing software modules rather than custom
building the entire software system.

January 2002 Page 4-15 Planning Phase

Section 4: Planning Phase

Investigate Hardware Alternatives

Description:

1) Investigate hardware alternatives

Factors to
Consider:

When the hardware to be used for the project has not been predetermined by
the system owner's existing computing environment, investigate hardware
available and through the commercial marketplace. In the Planning Phase,
the investigation of hardware is geared to determining project feasibility.

The following is a list of factors that should be considered when identifying
hardware alternatives:

 Availability and cost of hardware

- Shareable hardware
- Government excess
- New procurement

 Architecture compliance
 Current and future communications needs
 Computer security requirements of the system
 Standards requirements
 Volume of data
 Importance of data to the Agency mission
 Importance of data to the customer organization's mission and to job

performance
 Potential growth of the software to serve more customers
 Potential growth of the software to serve more locations
 Potential for interface to other systems or organizations
 Conformance to government standards such as networking and open

systems

Note: Medium and small software development efforts are often restricted
to the system owner's or customer sites' existing hardware.

January 2002 Page 4-16 Planning Phase

Section 4: Planning Phase

Formulate Platform Options

Description:

1) Formulate preliminary platform

options;
2) Identify the:

- Benefits
- Costs
- Assumptions
- Constraints
- Dependencies
- Risks

Deliverables:

Review Process:

Use the information collected about software and hardware alternatives to
formulate preliminary platform options. The purpose of identifying platform
options early in the project lifecycle is to assure that at least one technically
feasible and cost-effective approach exists to satisfy the project objectives. If
more than one platform option is feasible, identify the benefits, costs,
assumptions, constraints, dependencies, and risks associated with each
option.

No platform decisions are made at this time. Detailed technical solutions are
premature prior to defining the product requirements. The platform
alternatives information gathered in the Planning Phase is revisited in the
Functional Design Phase, at which time a final recommendation is developed
by the project team and presented to the system owner. The system owner is
responsible for making the final platform decision.

Develop a summary of platform options for use in the Feasibility Review or
Project Feasibility . Place a copy of the platform option information in the
Project Notebook.

Conduct a structured walkthrough to ensure that the most viable platform
options have been identified.

January 2002 Page 4-17 Planning Phase

Section 4: Planning Phase

Conduct Project Reviews

Conduct Structured Walkthroughs
Responsibility:

Description:

SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the Planning Phase, schedule at least one structured walkthrough to
review each of the Planning Phase deliverables, i.e., project plan, feasibility
study, software quality assurance plan, configuration management plan, etc.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the Planning Phase Exit process.
Additional IPAs can be performed during the phase, as appropriate. An IPA
is recommended after the completion of the Planning documents.
Specification.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct Requirements Definition Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

Schedule the Phase Exit as the last activity of the Planning Phase. It is the
responsibility of the project manager to notify the appropriate participants
when a project is ready for the Phase Exit process and to schedule the Phase
Exit meeting. All functional areas and the Quality Assurance representative
involved with the project should receive copies of the deliverables produced
in this phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 4-18 Planning Phase

Section 4: Planning Phase

Application Security Diagnostic Tool

Prupose:

This e-Government Application Security Diagnostic Tool is designed to
assist the design professional with security risk assessment and works in
conjunction with the Security Risk Assessment Guidelines document. This
tool presents issues relevant to application security and risk in an interactive
format taking into account security risk and the severity level of a breach.

Webster's definition of risk:

Risk is the possibility of suffering loss.

In a development project, the loss describes the possibility of losing the
integrity of data and information.

Each risk nominally goes through these functions sequentially, but the
activity occurs continuously, concurrently (e.g., risks are tracked in parallel
while new risks are identified and analyzed), and iteratively (e.g., the
mitigation plan for one risk may yield another risk) throughout the project
life cycle.

Function Description
Identify Search for and locate risks before they become problems.

Analyze
Transform risk data into decision-making information.
Evaluate impact, probability, and timeframe, classify risks,
and prioritize risks.

Plan
Translate risk information into decisions and mitigating
actions (both present and future) and implement those
actions.

Track Monitor risk indicators and mitigation actions.
Control Correct for deviations from the risk mitigation plans.

Communicate

Provide information and feedback internal and external to
the project on the risk activities, current risks, and
emerging risks.
Note: Communication happens throughout all the functions
of risk management.

January 2002 Page 4-19 Planning Phase

Section 4: Planning Phase

Application Security Diagnostic Tool

Scope:

This tool is focused on application risk assessment and does not attempt to
address security issues associated with technical hardware or software.
Application risk assessment is important during the systems development
lifecycle and should be factored in as an important component of this
processes. In addition, existing applications can be assessed with this tool.

The e-government application security diagnostic tool is available on the
Research and policy Web site at: http://www.michigan.gov/dit . The
enterprise IT standard for this tool is 1350.50 - Use of PKI Certificates
and Web Browser Application Risk Assessment is available by request
from the Office of Research and Policy.

Security Risk/Severity Level Graph

January 2002 Page 4-20 Planning Phase

- Server Certificate
SSL- Enhanced (Multiple Factor)
A th ti ti- State Issued
A th ti t- State Issued
E i t- Directory-Enabled Security on
A

- Open, Public
I f ti- No Additional Security
R i d- Normal Server and Database
P t ti- No authentication

i d

- Server Certificate
SSL- Enhanced (Multiple Factor)
A th ti ti- State Issued
A th ti t- State Issued
E i t- Directory-Enabled Security on
A

- Server Certificate
SSL- Basic (Single Factor)
Authentication- Directory-Enabled Security on
A li ti- Normal Server and Database
P t ti

- Server Certificate
SSL- Basic (Single Factor)
Authentication- Directory-Enabled Security on
A li ti- Normal Server and Database
P t ti

- Server Certificate
SSL- Basic (Single Factor)
A th ti ti- Directory-Enabled Security on
A li ti- Normal Server and Database
P t ti

- Server Certificate
SSL- Enhanced (Multiple Factor)
Authentication- State Issued
A th ti t- State Issued
E i t- Directory-Enabled Security on
A

- Server Certificate
SSL- Enhanced (Multiple Factor)
A th ti ti- State Issued
A th ti t- State Issued
E i t- Directory-Enabled Security on
A

- Server Certificate
SSL- Client-Side
C tifi t- Enhanced
A th ti ti- State Issued
A th ti t- State Issued Equipment
(ti l)- Directory-Enabled Security on
A

Level 1

Level 2

Level 3

Severity Level

Level 3Level 2Level 1

Risk Level

1 2 3

4 5 6

7 8 9

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 5

REQUIREMENTS DEFINITION PHASE

Section 5: Requirements Definition Phase

Table of Contents

Requirements Definition Phase ... 5-0
Highlights of Phase .. 5-1
Overview ... 5-2
Requirements Management .. 5-3
 Develop Requirements Traceability Matrix ... 5-4
 Requirements Change Control .. 5-6
Select Requirements Analysis Technique .. 5-7
Define Project Requirements .. 5-8
 Define Functional Requirements .. 5-14
 Define Input and Output Requirements .. 5-15
 Define Performance Requirements .. 5-16
 Define Customer Interface Requirements ... 5-17
 Define System Interface Requirements .. 5-18
 Define Communication Requirements ... 5-19
 Define Computer Security and Access Requirements .. 5-20
 Define Backup and Recovery Requirements ... 5-21
 Define Data Requirements .. 5-23
 Define Implementation Requirements ... 5-24
Compile and Document Project Requirements ... 5-26
 Develop Software Requirements Specification .. 5-27
Establish Functional Baseline ... 5-28
Develop Project Test Plan .. 5-29
 Identify Test Techniques .. 5-31
 Identify Test Phases .. 5-34
 Identify Test Environment Requirements .. 5-35
Develop Acceptance Test Plan ... 5-37
Select Design Technique ... 5-38
Revise Project Plan ... 5-39
Conduct Project Reviews ... 5-40
Records Retention and Disposition ... 5-41

January 2002 Page 5-i Requirements Definition Phase

Section 5: Requirements Definition Phase

Highlights of Phase

Requirements Traceability Matrix
Software Requirements Specifications
Software Change Control Request Tem

Methods and Tools

Structured Walkthroughs

Peer Reviews

In-Phase Assessment

Quality Reviews

Phase Exit

Key Activities:

Requirements Management
Select Requirements Analysis Technique
Define Project Requirements
Compile and Document Project Requirements
Establish Functional Baseline
Develop Project Test Plan
Develop Acceptance Test Plan
Select Design Technique
Revise Project Plan
Conduct Structured Walkthroughs
Conduct In-Phase Assessment
Conduct Requirements Definition Phase Exit

Outputs:

 Description of analysis technique
 Records of all project requirements
 Customer-oriented requirements manual (optional)
 Continuity of Operations Statement/Plan
 Data Dictionary
 Requirements Traceability Matrix
 Software Requirements Specification
 Project Test Plan
 Acceptance Test Plan (draft)
 Design technique
 Project Plan (revised)

Inputs:

 Project Notebook
 Description of customer environment
 Statement of project scope and objectives
 Statement of high-level project requirements
 Functional area contact list and project profile
 Summary of platform options
 Statement of project feasibility
 Cost Benefit Analysis
 Feasibility Study Document
 Project Plan
 Software Quality Assurance Plan
 Software Configuration Management Plan
 Risk Plan
 Communications Plan

Requirements Definition Phase

January 2002

Forms Utilized

 Software Change Control Log
 Continuity Operations Plan
plate Project Test Plans, Acceptance Test Plan
Page 5-1 Requirements Definition Phase

Section 5: Requirements Definition Phase

Overview

Description:

1) Develop a basis of mutual

understanding of project
requirements;

2) Obtain an approved software
requirements specification;

3) Analyze customers business
processes and needs;

4) Develop formal requirements
document;

5) Plan test activities

Review Process:

SDLC References:

The primary goal of the requirement definition phase is to develop a basis of
mutual understanding between the system owner/customers and the project
team about the requirements for the project. The result of this understanding
is an approved Software Requirements Specification that becomes the initial
baseline for software product design and a reference for determining whether
the completed software product performs as the system owner requested and
expected.

This phase involves analysis of the system owner/customers' business
processes and needs, translation of those processes and needs into formal
requirements, and planning the testing activities to validate the performance
of the software product.

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Section 2 Lifecycle Model. The time and
resources needed to conduct the quality reviews should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model,Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 5-2 Requirements Definition Phase

Section 5: Requirements Definition Phase

Requirements Management

Responsibility:

Description:

1) Gathering;
2) Organizing;
3) Prioritizing;
4) Documents;
5) Verifying; and
6) Managing requirements

Deliverables:

Review Process:

Resources:

Tasks:

Project Manager

Requirements management is essentially a program composed of gathering,
organizing, prioritizing, and documenting requirements; verifying that
requirements have been captured in the product, and managing changes to
requirements. Gathering, organizing, prioritizing and documenting
requirements is an interactive communication process and working
relationship between stakeholders and the project team to discover, define,
refine, and record a precise representation of the product requirements.

Requirements management documents the needs, expectations, and
understanding of the product to be delivered and provides a framework for
identifying, planning, scheduling, costing, verifying, tracing, testing,
evaluating, changing, and renegotiating requirements to satisfy stakeholder
needs and expectations of the project. When requirements are initially
gathered, some or all will be planned for the current project (e.g., initial
release). The requirements for the project are documented in the Software
Requirements Specification. As the project progresses, more requirements
may be identified and managed through a change control process. As part of
requirements management, the project manager must track requirements that
are accepted for the current project and those which will be planned for
subsequent releases.

Each requirement identified in the Software Requirements Specification
document should be uniquely identified in a Requirements Traceability
Matrix. The Requirements Traceability Matrix is a requirement management
tool that ensures requirements are traced and verified through the various
lifecycle phases, especially design, testing, and implementation.
Requirements must be traceable from external sources such as the customer,
to derived system-level requirements, to specific hardware/software product
requirements. In addition, all of these requirements must be cross-traceable
to design, implementation, and test artifacts to ensure requirements have
been satisfied.

A substantial amount of information that is used for requirements
management in later phases in the software development process is gathered
in the Requirements Definition Phase. The Requirements Traceability Matrix
is a deliverable that is created during the Requirements Definition Phase and
used to verify and validate that requirements are met and the product remains
within scope. Refer to each task for information on applicable deliverables.

Refer to each task for applicable review processes.

A template for the Requirements Traceability Matrix and Software
Requirements Specification document are available on the Research and
Policy Web site http://www.michigan.gov/dit

Carnegie Mellon University, Software Engineering Institute, Capability
Maturity Model: Guidelines for Improving the Software Process, Addison
Wesley Longman, Inc., 1994: http://www.sei.cmu.edu

The following tasks are involved in requirements management:

Develop Responsibility Traceability Matrix

January 2002 Page 5-3 Requirements Definition Phase

http://www.michigan.gov/dit
http://www.sei.cmu.edu/

Section 5: Requirements Definition Phase

Requirements Management

Requirements Change Control

January 2002 Page 5-4 Requirements Definition Phase

Section 5: Requirements Definition Phase

Requirements Traceability Matrix

Description:

Deliverables:

A requirements traceability matrix is a table used to trace project lifecycle
activities and deliverables to the project requirements. The matrix establishes
a thread that traces requirements from identification through implementation.

Every project requirement must be traceable back to a specific project
objective(s) described in the Project Plan. This traceability assures that the
product will meet all of the project objectives and will not include
inappropriate or extraneous functionality.

All deliverables produced during the design, code, and testing processes in
subsequent lifecycle phases must be traced back to the project requirements
described in the Software Requirements Specification. This traceability
assures that the product will satisfy all of the requirements and remain within
the project scope.

It is also important to know the source of each requirement, so that the
requirements can be verified as necessary, accurate, and complete. Meeting
conference records, customer survey responses, and business documents are
typical sources for project requirements.

Develop a matrix to trace the requirements back to the project objectives
identified in the Project Plan and forward through the remainder of the
project lifecycle phases. Place a copy of the matrix in the Project Notebook.
Expand the matrix in each phase to show traceability of deliverables to the
requirements and vice versa.

The requirements traceability matrix should contain the following fields:

 The requirement statement.

 Requirement source (Conference; Configuration Control Board; Task

Assignment, etc.).

 Software Requirements Specification and/or Functional Requirements

 Document paragraph number containing the requirement.

 Design Specification paragraph number containing the requirement.

 Program Module containing the requirement.

 Test Specification containing the requirement test.

 Test Case number(s) where requirement is to be tested (optional).

 Verification of successful testing of requirements.

 Modification field. If requirement was changed, eliminated, or replaced,

indicate disposition and authority for modification.

 Remarks.

January 2002 Page 5-5 Requirements Definition Phase

Section 5: Requirements Definition Phase

Requirements Traceability Matrix

Review Process:

Illustration of Traceability
Matrix:

Resource:

Conduct a structured walkthrough of the Requirements Traceability Matrix
to ensure that all requirements have been accurately captured.

One method for tracing requirements is a threading matrix that groups
requirements by project objectives. Under each project objective, the source
of the Requirement, the unique requirement identification number, and the
lifecycle activities are listed in columns along the top and the project
requirements in rows along the left side. As the project progresses through
the lifecycle phases, a reference to each requirement is entered in the cell
corresponding to the appropriate lifecycle activity. See Sample Requirements
Traceability Matrix below, provides an example.

A template for the Requirements Traceability Matrix is available on the Web
site at: http://www.michigan.gov/dit .

R
eq

ui
re

m
en

t

So
ur

ce

U
ni

qu
e

N
um

be
r

So
ftw

ar
e

R
eq

ts

Sp
ec

/F
un

ct
io

na
l

R
eq

ui
re

m
en

t
D

oc
um

en
t

D
es

ig
n

Sp
ec

.

Pr
og

ra
m

 M
od

ul
e

Te
st

 S
pe

c
Te

st
 C

as
e(

s)

Su
cc

es
sf

ul
 T

es
t

Ve
rif

ic
at

io
n

M
od

ifi
ca

tio
n

of

R
eq

t.

R
em

ar
ks

Objective 1: Security
The software
product shall
have three
customer access
levels with the
capability to add
new access
levels in the
future.

9/10/01
security
meeting

Each customer
access level shall
have a unique
designation.

9/10/01
security
meeting

One customer
access level shall
allow read-only
access to the
production
database.

9/10/01
security
meeting

January 2002 Page 5-6 Requirements Definition Phase

http://www.michigan.gov/dit

Section 5: Requirements Definition Phase

Requirements Change Control

Description:

Deliverables:

Review Process:

Resources:

As a project progresses, more requirements may be identified. Using the
change control process, the project manager will track requirements that are
accepted for the current project and those which will be planned for
subsequent releases.

Changes to requirements should be initiated via a formal change request
form, and then logged and tracked by the project manager to ensure the
changes are included in the traceability matrix, testing and acceptance plans.
Other deliverables are revised as appropriate.

When the project manager is alerted to a change in requirements, the person
initiating the change should document the request on a software change
request form. The change request form should capture as much detail about
the requirement as possible, e.g.; its effect on the system, procedures and
documentation; as well as the reason and priority of the change. A separate
change request form should be completed for each requested change.

When the project manager receives the formal software change request form,
the change should be recorded on a software change control log. Once
logged, the request should be provided to the development staff for
evaluation.

Once the evaluation is completed, the project stakeholders and project
manager should evaluate the impact to the project and the priority level of
the change request to determine whether or not to approve the change for
inclusion in the current project or deferral for a future project. Approvals
should be recorded on the change request form.

The status of the change request should be managed through on the software
change control log and updated as the status changes.

Once a change is approved, the requirements traceability matrix and all other
appropriate deliverables, e.g., test plans or acceptance plans, should be
updated to include the new requirement. If scheduling is impacted by the
change, the Project Plan should be updated.

As changes to the requirements are requested, the completed Software
Change Request Forms and a copy of the Software Change Control Log
should be maintained in the Project Notebook.

A peer review or structured walkthrough may be conducted on the Software
Change Request Forms and Software Change Control Log.

Templates for the Software Change Control Request and the Software
Change Control Log can be found on the DIT web
http://www.michigan.gov/dit .

January 2002 Page 5-7 Requirements Definition Phase

http://www.michigan.gov/dit

Section 5: Requirements Definition Phase

Select Requirements Analysis Techniques

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager/Team

A requirements analysis technique is the set of data collection and analysis
techniques (e.g., customer interviews and rapid prototyping) combined with
the lifecycle requirements standards (e.g., tracing the requirements through
all lifecycle activities) that are used to identify the project requirements and
to define exactly what the software product must do to meet the system
owner/customers' needs and expectations. When appropriate, the technique
must include methods for collecting data about customers at more than one
geographic location and with different levels and types of needs.

The requirements analysis technique should be in harmony with the type,
size, and scope of the project; the number, location, and technical expertise
of the customers; and the anticipated level of involvement of the customers
in the data collection and analysis processes. The technique should ensure
that the functionality, performance expectations, and constraints of the
project are accurately identified from the system owner/customers'
perspective. The technique should facilitate the analysis of requirements for
their potential impact on existing operations and business practices, future
maintenance activities, and the ability to support the system owner's long-
range information resource management plans.

It is advantageous to select a technique that can be repeated for similar
projects. This allows the project team and the system owner/customers to
become familiar and comfortable with the technique.

Discuss the analysis technique with the system owner and customers to make
sure they understand the process being used, their role and responsibilities in
the process, and the expected format of the output (e.g., how the
requirements will be organized and described).

Create a description of the analysis technique and share it with all members
of the project team, system owner, and customers. Place a copy of the
analysis technique description in the Project Notebook.

Conduct a structured walkthrough to verify that the requirements analysis
technique is appropriate for the scope and objectives of the project. A
structured walkthrough is not needed when the technique has been used
successfully on similar projects for the same system owner/customer
environment.

January 2002 Page 5-8 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Responsibility:

Description:

Characteristics:

Project Manager/Team

Use the project scope, objectives, and high-level requirements as the basis
for defining the project requirements. The questions used to define the
project objectives may be helpful in developing the project requirements.
The goals for defining project requirements are to identify what functions are
to be performed on what data, to produce what results, at what location, and
for whom.

The requirements must focus on the software products that are needed and
the functions that are to be performed. Avoid incorporating design issues and
specifications in the requirements. One of the most difficult tasks is to
determine the difference between “what” is required and “how to”
accomplish what is required. Generally, a requirement specifies an externally
visible function or attribute of a system—i.e., “what”. A design describes a
particular instance of how that visible function or attribute can be
achieved—i.e., “how to”.

Requirements should be specified as completely and thoroughly as possible.
The requirements must support the system owner's business needs,
information resource management long-range plans, and the organizational
and agency missions. When requirements are being defined, it is not
sufficient to state only the requirements for the problems that will be solved;
all of the requirements for the project must be captured.

Each requirement must be stated as a unique objective with the following
characteristics. The existence of these characteristics must be verified prior
to the delivery of the Software Requirements Specification later in the
Requirements Definition Phase:

 Necessary - Absolute requirements that are to be verified are indicated

by "must" or "shall". Goals or intended functionality are indicated by
"will".

 Correct – Each requirement is an accurate description of a feature or

process of the software product.

 Unambiguous - The statement of each requirement denotes only one

interpretation.

 Complete - Each requirement describes one result that must be achieved

by the software product. The requirement should not describe the means
of obtaining the result.

 Consistent - Individual requirements are not in conflict with other

requirements.

 Verifiable (testable) - Each requirement is stated in concrete terms and

measurable quantities. A process should exist to validate that the
software product (when developed) will satisfy the set of requirements.

January 2002 Page 5-9 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Characteristics
Continued:

Identification
System:

Changes:

Description of Customer
Environment:

1) Understand current customers’

environment;
2) Analyze customers’ manual

procedures or automated
processes;

3) Gain understanding of the
functions performed

Types of
Information:

 Modifiable - The structure and style of the requirements are such that
any necessary changes to the requirements can be made easily,
completely, and consistently.

 Traceable - The origin of each requirement is clear and can be tracked

in future development activities and tests.

The creation of a standard identification system for all requirements is
required in order to facilitate configuration control, requirements traceability,
and testing activities. The identification system must provide a unique
designator for each requirement. For example, the identification system can
classify the requirements by type (e.g., functional, input, or computer
security). Within each type classification, the requirements can be assigned a
sequential number. Select an identification system that is appropriate for the
scope of the project.

As the project evolves, the requirements may change or expand to reflect
modifications in the customers' business plans, design considerations and
constraints, advances in technology, and increased insight into customer
business processes. A formal change control process must be used to
identify, control, track, and report proposed and approved changes.
Approved changes in the requirements must be incorporated into the
Software Requirements Specification in such a way as to provide an accurate
and complete audit trail of the changes. This change control process should
be an integral part of the project's Software Configuration Management Plan.

A thorough understanding of the current customers' environment is
necessary to define the objectives, scope, and high-level requirements of the
project. Analyze the procedures manual or automated processes to
understand what customers do, how they do it, and what improvements are
desired or needed. This includes gaining an understanding of the functions
performed, identifying information flows within the processes, and listing
process inputs and outputs.

Use appropriate data collection techniques such as customer surveys,
interviews, and document inspections to gather data and analyze the
customer environment.

The following list provides samples of the type of information that should be
considered:

 Mission – Obtain a copy of the mission of the primary customer

organization(s) and place in the project notebook.

 Work Processes - the customers perform Analyze the work processes or

tasks that. Identify the relationships and priority of the processes.

 Workload - Describe the volume of work currently being performed.

For automated processes include processing time for batch operations,
response times, peak number of simultaneous customers of interactive
systems, and number of transactions.

January 2002 Page 5-10 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Types of Information
Continued:

Deliverables of Customer
Environment:

Review Process:

Description of High-Level
Project Requirements:

1) Feasibility of project;
2) Estimate resources for

hardware and software;
3) Estimate need for equipment or

software training

 Processing/Data Flow - Analyze the major processing/data flows for
the work processes. Include the flow of data between different customer
groups, manual and automated processes, and different customer sites.

 Integration/Interfaces - Identify interactions and interfaces that the

customers' current automated systems share with other automated
systems.

 Customers - Identify the skill sets in order to assess the capability of the

organization and number of personnel at both the owner’s site and other
SOM sites for contractor staff who operate, maintain, and use the
current manual procedures or automated processes.

 Costs - Itemize costs incurred in operating the customers' current

manual or automated systems.

 Equipment - Identify equipment used in the current manual or

automated systems and relates equipment to the function it supports in
the systems.

 Communications - Identify the guidelines, standards, equipment and

software to support system communications.

 Software - Identify software packages that are being used.

 Statutory Requirements - Identify the guidelines, directives and

standards the customer must comply with in the performance of the
work processes.

Develop a description of the customer environment and place a copy in the
Project Notebook. The description will be incorporated into future
deliverables such as the Project Plan and the Requirements Specifications.

A peer review or structured walkthrough(s) may be conducted on the
customer environment description to ensure all pertinent information has
been captured.

High-level requirements should be of sufficient detail to make a preliminary
determination about the feasibility of the project, to estimate the resources
that are needed, to assess hardware and software requirements, and to
estimate the need for equipment or software training.

The current and anticipated needs of all customer groups must be identified.
Customers in different organizational units or geographic locations may have
diverse or unique requirements that must be incorporated into the project
requirements.

The project team participates by providing technical assistance, i.e., to
determine the validity of high-level customer/client information system
requirements and those that can be accomplished. The group also provides
available input by identifying concerns (implicit requirements) that will
surface when customer requirements are implemented, i.e., hardware,
software, costs (indirect/direct), people resources, training, etc.

January 2002 Page 5-11 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Illustration of High-Level
Project Requirements:

Organize high-level project requirements into categories of related data. The
following list provides samples of the types of data that should be
considered:

 Inputs - Identify source documents and data that will be used as input to

the processes. Provide descriptive information about data such as the
type, volume, condition (e.g., edited or unedited), organization, and
frequency. Include inputs such as records or batch files from other
systems that will be downloaded or migrated.

 Outputs - Identify outputs such as reports, display screens, documents,

and data files.

 Databases - Estimate the high-level contents, purpose, use, format,

organization, and update frequency of databases that will be used by the
product. Identify other existing or planned databases that would
interface with the product as a provider or recipient of information.

 Processing/Data Flow - Describe the major processing/data flow for the

product. Include flow of data from the product to other systems and vice
versa.

 Data Communications - Estimate the major data communications

resources required to support the product. Include requirements for
networks, dial-up access, and other communication configurations to
support data access and retrieval requirements.

 Interfaces - Identify any systems with which the product must interface.

Describe factors that may impact the design of the product.

 Security, Privacy, and Control - State requirements for ensuring the

integrity of the data, for safeguarding against unauthorized access to the
databases, and for other customer access controls.

 Standards and Guidance - Describe the system or process actions or

data attributes that are needed to comply with standards and guidance.

 Training - Identify the type of training required to ensure efficient

operation of the software product. Provide estimates of the number of
personnel to be trained by type and frequency of training.

 Workload - Estimate the volume of work to be handled at slow, normal,

and peak periods. Identify dates associated with each period. Include
processing time for batch systems, response times, peak number of
simultaneous customers of interactive systems, and number of
transactions.

 Costs - Estimate initial development costs and expected operating cost

savings over the expected lifetime of the software product.

 Equipment - Estimate new equipment that might need to be acquired or

manufactured and current equipment that would continue to be used.
Determine critical computer resources.

January 2002 Page 5-12 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Illustration of High-Level
Project Requirements
Continued:

Deliverables of High-Level
Project Requirements:

Illustration of High-Level
Project Requirements:

 Software - Estimate software and firmware packages that might need to
be acquired and any updates needed for existing software. Determine
critical computer resources.

 Documentation - Determine documentation needs based on Exhibit 2.0-

1, agency-specific requirements and deliverables and other needs unique
to the project.

 Usability – Determine the ease with which a customer can learn to

operate, prepare inputs for, and interpret outputs of a system or
component.

 Operability - Define requirements associated with the operation of the

system or application. The objective is to develop an automated system
that requires minimal operator intervention after initial setup.
Requirements should address areas such as unattended operations,
automated scheduling of system or application tasks, remote
intervention capabilities, operational documents, special conditions
under which system must operate, e.g., error handling and message
handling for system failure and recovery.

 Maintainability - Determine the ease with which a system or

component can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment. Determine the ease
with which the system can be retained in, or restored to, a state in which
it can perform its required functions.

Develop a formal statement of the high-level project requirements. This
statement will be incorporated into the Project Plan. The statement of
requirements should be included in the Project Feasibility Document (if
prepared). The high-level requirements will serve as the foundation for the
software requirements developed during the Requirements Definition Phase.
Place a copy of the high-level requirements in the Project Notebook.

The following are high-level access requirements:

 Allow any customer to access the application and enter an access

request.

 Have an interface to verify and maintain customer information.

 Design system to verify customer access levels.

 Allow for electronic authorizations for request verification.

 Allow for the entry, query, and maintenance of application data based

on the customer access levels.

January 2002 Page 5-13 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Project Requirements

Illustration of High-Level
Project Requirements
Continued:

Review Process of High-Level
Project Requirements:

SDLC Reference:

Resource

Deliverables:

Review Process:

Tasks:

 Provide for the capture and tracking of request data for the following
request types:

- requesting initial computer access
- adding access levels to an existing logon identification code
- reinstating a suspended computer access
- deleting an existing computer access
- suspending an existing computer access

 Provide for the entry, query, and maintenance of the following
information:
- computer systems
- applications
- customer logon identification codes

 Allow customers to view and maintain their own address information

 Provide a means for the system owner and security officers to review

and change current customer access information.

A peer review may be conducted on the formal statement of high-level
project requirements although, once the Project Plan is developed, a
structured walkthrough will be conducted.

A description of the peer review process can be found in Section 2, Quality
Reviews.

The system owner organization's information resource management long-
range plan provides useful planning information for consideration when
developing the requirements.

For each of the following refer to each task for applicable deliverables.

For each of the following refer to each task for applicable review processes.

The following tasks are involved in developing project requirements:

Define Functional Requirements
Define Input and Output Requirements
Define Performance Requirements
Define Customer Interface Requirements
Define System Interface Requirements
Define Communication Requirements
Define Computer Security and Access Requirements
Define Backup and Recovery Requirements
Define Data Requirements
Define Implementation Requirements

January 2002 Page 5-14 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Functional Requirements

Description:

Deliverables:

Optional
Deliverables:

Review Process:

Functional requirements define what the software product must do to
support the system owner's business functions and objectives. The
functional requirements should answer the following questions:

 How are inputs transformed into outputs?
 Who initiates and receives specific information?
 What information must be available for each function to be performed?

Identify requirements for all functions whether they are to be automated or
manual. Describe the automated and manual inputs, processing, outputs,
and conditions for all functions. Include a description of the standard data
tables and data or records that will be shared with other applications.
Identify the forms, reports, source documents, and inputs/outputs that the
software product will process or produce to help define the functional
requirements.

A functional model should be developed to depict each process that needs
to be Included. The goal of the functional model is to represent a complete
top-down picture of the business process.

Flow diagrams should be used to provide a hierarchical and sequential view
of the process owner's business functions and the flow of information
through the processes.

Maintain a record of all functional requirements. Save for incorporation
into the Software Requirements Specification. Place a copy of the
functional requirements in the Project Notebook.

Consider developing an optional deliverable that defines how the final
software product will operate to support the system owner organization's
business functions and objectives. This customer-oriented requirements
manual would identify processes in a narrative form from the customer's
perspective and would include requirements for all functions whether they
are to be automated or manual. A functional description can be developed
to depict each process that will be provided. The goal is to present a
complete top-down picture of the business process.

This customer-oriented requirements manual can be used as an aid in
validating the functional requirements and serves as the basis for the
customer documentation. If a test group outside the project team is used, the
test group can work with the project team to develop the manual.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the functional requirements.

Illustration of Functional Requirement of the Time Clock System:

The validation rules for the time and attendance file are that the record type will contain “TA”.

January 2002 Page 5-15 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Input and Output Requirements

Description:

Deliverables:

Review Process:

Describe all manual and automated input requirements for the software
product such as data entry from source documents and data extracts from
other applications; include where the inputs are obtained.

Describe all output requirements for the software product such as printed
reports, display screens, and files; include who or what is to receive the
output.

Maintain a record of all input and output requirements. Save for
incorporation into the Software Requirements Specification. Place a copy of
the input and output requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the input and output
requirements.

Illustration of Input Requirement of the Time Clock System:

The PP_End_Date is mandatory and must be sent in “ccyymmdd” format.

Illustration of Output Requirement of the Time Clock System:

When searching for an Department, the return display on the screen must the Department name not the 2 digit
code.

January 2002 Page 5-16 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Performance Requirements

Description:

Deliverables:

Review Process:

Performance requirements define how the software product must function
(e.g., hours of operation, response times, and throughput under various load
conditions). The information gathered in defining the project objectives can
translate into very specific performance requirements; (e.g., if work
performed for an organization is mission essential to the Department, the
hours of operation and throughput will be critical to meeting the mission).
Also, government and SOM policy can dictate specific availability and
response times.

Maintain a record of all performance requirements. Save for incorporation
into the Software Requirements Specification. Place a copy of the
performance requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the performance requirements.

Illustration of Performance Requirement of the Time Clock System:

The application must be available for use from 8:00 am to 5:00 p.m. Monday through Friday.

January 2002 Page 5-17 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Customer Interface Requirements

Description:

Interface Issues:

Deliverables:

Review Process:

The customer interface requirements should describe how the customer will
access and interact with the software product, and how information will flow
between the customer and the software product.

A standard set of customer interface requirements may be established for the
system owner organization. If not, work with the system owner and
customers to develop a set of customer interface requirements that can be
used for all automated products for the system owner's organization. A
standard set of customer interface requirements will simplify the design and
code processes, and ensure that all automated products have a similar look
and feel to the customers. When other constraints (such as a required
interface with another application) do not permit the use of existing customer
interface standards, an attempt should be made to keep the customer
interface requirements as close as possible to the existing standard.

Maintain a record of all customer interface requirements. Save for
incorporation into the Software Requirements Specification. Place a copy of
the customer interface requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the customer interface
requirements.

Illustration of Customer Interface Requirement:

The following are some of the issues that should be considered when trying to identify customer interface
requirements:

 The customers' requirements for screen elements, navigation, and help information.

 The enterprise standards issued by the State of Michigan, and industry that apply to customer interfaces.

 The function of the customers who will access and use the product.

 The range of work that the customers will be performing with the product.

Define the customer interface requirements by identifying and understanding what is most important to the
customer, not what is most convenient for the project team.

All data entry screens must include a unique screen identification number.

January 2002 Page 5-18 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define System Interface Requirements

Description:

The hardware and software interface requirements must specify hardware
and software interfaces required to support the development, operation, and
maintenance of the software product.

The following information should be considered when defining the hardware
and software interface requirements:

 System owner and customers' computing environment.

 Existing or planned software that will provide data to or accept data

from the product.

 Other organizations or customers having or needing access to the

product.

 Purpose or mission of interfacing software.

 Common customers, data elements, reports, and sources for

forms/events/outputs.

 Timing considerations that will influence sharing of data, direction of

data exchange, and security constraints.

 Development constraints such as the operating system, data base

management system, language compiler, tools, utilities, and network
protocol drivers.

 Standardized system architecture defined by hardware and software

configurations for the affected organizations, programmatic offices,
sites, or telecommunications programs.

Deliverables:

Review Process:

Maintain a record of all system interface requirements. Save for
incorporation into the Software Requirements Specification. Place a copy of
the system interface requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the system interface requirements.

Illustration of System Interface Requirement:

The application must interface with the “Autotime for Windows” software and the “Tracy Time” software.

January 2002 Page 5-19 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Communications Requirements

Description:

Deliverables:

Review Process:

The communication requirements define connectivity and access
requirements within and between customer locations and between other
groups and applications.

The following factors should be considered when defining communication
Requirements:

 Communication needs of the customer and customer organizations.

 Customer organization's existing and planned communications

environment (e.g., telecommunications; LANs, WANs, and dial-up).

 Projected changes to the current communication architecture, such as the

connection of additional local and remote sites.

 Limitations placed on communications by existing hardware and

software including:
- customer systems
- applications that will interface with the product
- organizations that will interface with the product

 Organization, government, and industry standards that define

communication requirements and limitations.

 Future changes that may occur during the project.

Maintain a record of all communication requirements. Save for incorporation
into the Software Requirements Specification. Place a copy of the
communication requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability accuracy, and completeness of the communications requirements.

Illustration of Communications Requirement:

The application must be able to communicate with the Lawson time record system.

January 2002 Page 5-20 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Computer Security and Access Requirements

Description:

Steps:

Deliverables:

Review Process:

Develop the computer security requirements in conjunction with the system
owner's Security Officer.
This involvement affords early determination of classifications and levels of
access protection required for the software product.

If a software product under development processes sensitive personal
information, appropriate safeguards must be established to protect the
information from accidental disclosure.

Implement applicable security procedures to assure data integrity and
protection from unauthorized disclosure, particularly during development
efforts. The organization that owns the data defines the data classification.
The project team must be aware of all the types of data and of any classified
or proprietary algorithms used in the software product.

Use the following steps to determine computer security requirements:

1. Identify the types of data that will be processed by the software product.
2. Determine preliminary data protection requirements.
3. Coordinate with the owner of the host platform to identify existing
supporting computer security controls, if applicable.
4. Incorporate security requirements into the Software
 Requirements Specification.

Maintain a record of all security and access requirements. Save for
incorporation into the Software Requirements Specification. Place a copy of
the security and access requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the computer security and access
requirements.

Illustration of Access Control Questions:

The following list provides sample questions that can be used to help define the access controls for the software
product:

 What access restrictions are placed on the customers by their organization or programmatic office?
 What are the audit and other checking needs for the software product?
 What separation of duties, supervisory functions related to control, operating environment requirements, or

other functions will impact the software product?
 What measures will be used to monitor and maintain the integrity of the software product and the data from the

customer's viewpoint?

Illustration of Security Requirements:

A new customer ID and password will need to be established on the tandem computer system used for the electronic
data exchange gateway at the Michigan Information Processing Center (MIPC).

January 2002 Page 5-21 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Backup and Recovery Requirements

Description:

Deliverables:

Review Process:

Resource:

Develop the requirements for data backup, recovery, and operation startup
for the software product in conjunction with the site authority for continuity
of operations. If a software product has been defined as mission essential, a
Continuity of Operations Plan must be developed. A checklist is provided in
Exhibit 5.3-1, Checklist for Identifying Mission-Essential Software, to
determine if the software is mission essential. Additionally, ensure that the
mission essential system is included in the Continuity of Operations or
Disaster Recovery Plans for the system on which the software is executed.

If a software product is determined to be mission essential, Continuity of
Operations Plan must be developed. If the software product is not mission
essential, a continuity of operations statement is required. Two samples of
continuity of operations statements that are appropriate for software that is
not mission essential are provided after the checklist. Place a copy of the
Continuity of Operations Statement or Plan in the Project Notebook.

Conduct structured walkthroughs as needed to assure the necessity,
testability, accuracy, and completeness of the backup and recovery
requirements.

A template for the Continuity of Operations Plan is available on the
Research and Policy Web site at: http://www.michigan.gov/dit .

Illustration of Back-up and Recovery of the Time Clock System:

The project will introduce one new daily backup processing during TKU release payroll processing days, to backup
the interface file data that have been updated to the archive directory.

January 2002 Page 5-22 Requirements Definition Phase

http://www.michigan.gov/dit

Section 5: Requirements Definition Phase

Exhibit 5.3-1 Checklist for Identifying Mission-Essential Software

Use this checklist to identify software products that are mission essential. IF a “yes” answer is selected for one or
more of the criteria, the software product is mission essential and Continuity of Operations Plan must be developed.

 Criterion Yes No
1 Inability to perform function adversely affects agencies mission.

2 Inability to perform function adversely affects safety of individuals.
3 Needed for activities during a state emergency.
4 Needed for mobilization and protection of material and manpower during state

emergency.

5 Function required for maintenance of public health, safety, and order.
6 Maintains records essential to preservation of legal rights.

7 Large financial loss incurred with inability to perform functions.
8 Large expense incurred if performing function by other means.

9 Primary repository of information reported to Legislature or other agencies.

10 Critical for compliance with federal and/or state regulatory requirements.

11 Sole source of data unobtainable by other means, or not easily recreated.

January 2002 Page 5-23 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Data Requirements

Description:

Deliverables:

Review Process:

Data requirements identify the data elements and logical data groupings that
will be stored and processed by the software product. The identification and
grouping of data begins during the Requirements Definition Phase and is
expanded in subsequent phases as more information about the data is known.

The major output of the data requirements identification process is a data
dictionary. A data dictionary provides an ordered set of definitions about
data inputs and outputs, and data stores. In the Requirements Definition
Phase, the data dictionary contains a minimum amount of information about
data elements such as definitions of the entities, how the data are stored, and
data flows to or from other applications. The data dictionary is refined
during the design phases as data elements are documented in more detail,
and the logical groupings of data elements are formed into interrelated tables
or record descriptions. Maintain a record of all data requirements. Save for
incorporation into the Software Requirements Specification. Place a copy of
the data requirements in the Project Notebook.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the data requirements.

Illustration of Data Requirement:

The data files sent from the state agencies should have headers and footers so that the data received is checked for
any transmittal errors.

January 2002 Page 5-24 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Implementation Requirements

Description:

Operating
Environment:

Describe the requirements anticipated for implementing the software product
(e.g., customer production cycle). The high-level implementation
requirements are identified early in the lifecycle to support decisions that
need to be made for the software development approach. The
implementation requirements are expanded into a full implementation
approach during the design phases. The following paragraphs provide
highlights of some of the implementation requirements that need to be
considered.

Identify any capacity restrictions on the existing hardware or software that
needs to be addressed and identify any hardware or software that needs to be
acquired (e.g., communication hardware, file servers, off-the-shelf software,
network interface cards, and LAN utilities).

Acquisition: If hardware or software must be acquired, identify the
necessary acquisition activities. These activities include preparing
specifications, estimating costs, scheduling procurement activities, selection,
installation, and testing.

Conversion: Identify requirements for converting data from an existing or
external application to the new software product. Consider requirements for
data entry, data protection, computer time, conversion programs, personnel,
and other resources that will be needed. Also identify the requirements for
the conversion of software, if necessary. Implementing a new application
may involve converting software from one environment to another, or
modifying software to interface with other applications. Include
requirements for testing the conversion process and validating that it was
successfully accomplished.

Installation: Identify the installation requirements for any new hardware,
operating system, or software. For hardware installations, consider
environmental factors such as air conditioning, power supply, and security
requirements. For software installations, consider proprietary software such
as data base management systems. For application software, consider the
installation of the application's programs, parallel operation of the old and
new applications, or the cutover from a test to a production environment.
Hardware and software installation must be coordinated with the work cycles
of the customer organization to create a minimum of disruption, and to
assure that data are available as needed. Installation must be scheduled to
assure that, when data conversion is necessary, the needed data are protected.

Training: Identify the specific training needs for various categories of
customers and administrators. Also identify training requirements for
personnel time, computer time, training facilities, and training data base(s).

Documentation: Identify requirements for the development and distribution
of operational documentation for software support personnel and customer
documentation.

January 2002 Page 5-25 Requirements Definition Phase

Section 5: Requirements Definition Phase

Define Implementation Requirements

Operating
Environment
Continued:

Deliverables:

Review Process:

Operational documentation may include job control procedures and listings,
operational instructions, system administration responsibilities, archiving
procedures, and error recovery. Customer documentation includes the
procedures manual, step-by-step instructions, online documentation, and
online help facilities.

Maintain a record of all implementation requirements. Save for incorporation
into the Software Requirements Specification. Place a copy of the
implementation requirements in the Project Notebook. This information will
also be used to develop an Implementation Plan in the Functional Design
Phase.

Conduct structured walkthroughs as needed to ensure the necessity,
testability, accuracy, and completeness of the implementation requirements.

Illustration of Conversion Requirements:

The Time Clock system will make any necessary conversions to the software.

January 2002 Page 5-26 Requirements Definition Phase

Section 5: Requirements Definition Phase

Compile & Document Project Requirements

Responsibility:

Description:

Deliverables:

Review Process:

Resource:

Task:

Project Manager/Team

Compile the requirements gathered during the requirements analysis process
in preparation for the development and delivery of the draft Software
Requirements Specification. The following steps should be performed as part
of the requirements compilation activity:

 Select and use a standard format for describing the requirements. Ensure

you comply with Information Architecture standards and any site-
specific standards.

 Present the logical and physical requirements without dictating a
physical design or technical solutions.

 Write the requirements in non-technical language that can be fully
understood by the system owner and customers.

 Organize the requirements into meaningful groupings (e.g., all security-
related requirements or all requirements for generating reports).

 Develop a numbering scheme for the unique identification of each
requirement.

 Select a method for: (1) tracing the requirements back to the sources of
information used in deriving the requirements (e.g., specific system
owner/customer project objectives); and (2) threading requirements
through all subsequent lifecycle activities (e.g., testing).

Refer to the task for applicable deliverables.

Refer to the task for applicable review processes.

A template for a Software Requirements Specification is available on the
Research and Policy Web site at: http://www.michigan.gov/dit .

The following task is involved in the compilation of the project
requirements:

Develop Software Requirements Specifications

January 2002 Page 5-27 Requirements Definition Phase

http://www.michigan.gov/dit

Section 5: Requirements Definition Phase

Develop Software Requirements Specification

Description:

Deliverables:

Review Process:

SDLC Reference:

Resource:

The Software Requirements Specification describes the inputs to be supplied
by the customer or other sources, the processing that needs to occur, and the
outputs desired by the customer or required by interfacing systems. The
emphasis should be placed on specifying product functions without implying
how the product will provide those functions. This approach provides
maximum flexibility for the product designers. The how-to of product
implementation is determined in the design phases.

Additionally, project information should not be included in a Software
Requirements Specification. A project describes a particular sequence of
activities and associated resources that defines a process to develop the
software product. However, certain information may be considered a
requirement in one project but design or implementation details in another
project. The Software Requirements Specification should be carefully
reviewed to ensure each documented requirement is not project or design
information.

Prepare the Software Requirements Specification by integrating all of the
requirements developed during this phase. Several formats are available for
organizing the requirements information (e.g., from a functional perspective
or a data processing perspective).

Document all design constraints including processing, performance,
interface, resource, safety, security and reliability requirements. Define data
constraints such as limits, formats, messages, commands, and displays.

Conduct structured walkthroughs as needed to ensure that the Software
Requirements Specification is accurate, complete, and expresses the
requirements in a manner that can be understood by the system owner. The
completion of the draft Software Requirements Specification is an
appropriate time to schedule an In-Phase Assessment (IPA).

Appendix D, In-Phase Assessment Process Guide provides a description and
instructions for conducting an IPA.

A template of the Software Requirements Specification document is
available on the Research and Policy Web site at:
http://www.michigan.gov/dit

January 2002 Page 5-28 Requirements Definition Phase

http://www.state.mi.us/cio/oits

Section 5: Requirements Definition Phase

Establish Functional Baseline

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager / Team

The functional baseline, sometimes called a system requirements baseline, is
the main technical deliverable of the Requirements Definition Phase. The
system requirements are baselined after the system owner's formal approval
of the Software Requirements Specification. Once the requirements are
baselined, any changes to the requirements must be managed under change
control procedures established in the Software Configuration Management
Plan. Approved changes must be incorporated into the Software
Requirements Specification.

Prepare the final Software Requirements Specification and submit to the
system owner and customers for their review and approval. The approved
Software Requirements Specification is the official agreement and
authorization to use the requirements for the software product design.
Approval implies that the requirements are understood, complete, accurate,
and ready to be used as the basis for the subsequent lifecycle phases.

It is important for the system owner/customers to understand that changes to
the approved Software Requirements Specification affect the project scope
and therefore can change the project cost, resources, or schedule. It is the
responsibility of the project manager and project team to identify system
owner/customer requested changes that would result in a change of project
scope; evaluate the potential impact to the project costs, resources, or
schedule; and notify the system owner of the project planning revisions that
will be required to accommodate their change requests.

Place a copy of the approved Software Requirements Specification in the
Project Notebook.

The system owner and customers should review the Software Requirements
Specification. After making the changes needed to resolve problems found
during the review, the functional baseline is formally established upon
receipt of the system owner's approval.

January 2002 Page 5-29 Requirements Definition Phase

Section 5: Requirements Definition Phase

Develop Project Test Plan

Responsibility:

Description:

Deliverables:

Project Manager

The Project Test Plan is a narrative and tabular description of the test
activities planned for the project during development or enhancement. The
Project Test Plan should establish the testing necessary to validate that the
project requirements have been met and that the deliverables are at an
acceptable level in accordance with existing standards. The plan also ensures
that a systematic approach to testing is established and that the testing is
adequate to verify the functionality of the software product.

The Project Test Plan includes the resources, project team responsibilities,
and management techniques needed to plan, develop, and implement the
testing activities that will occur throughout the lifecycle. If individuals
outside of the project team perform system and acceptance testing, the plan
includes the responsibilities and relationships of external test groups.

In this phase, the plan is written at a high level and focuses on identifying
test techniques and test phases. Detailed information about test products (i.e.,
test plans, test procedures, and test reports) is added to the Project Test Plan
as the project progresses through subsequent lifecycle phases.

Development of the Project Test Plan is the responsibility of the project
manager. If a test group outside the project team will be involved in any test
phase, the project manager must coordinate the Project Test Plan with each
test group. The Project Test Plan must be reviewed and approved by the
system owner prior to conducting any tests.

Note: For small software projects, a formal Project Test Plan may not be
necessary; however, a test approach and testing are required.

Note: Although acceptance testing is part of the project testing, it is
discussed separately in more detail.

When the Project Test Plan is complete, it should contain the following
information:

 Describe the occurrence and timing of the test phases in the lifecycle

and the entrance and exit criteria for each test phase.

 Specify the test products at each test phase. Describe the types and

scope of the testing activities to be performed on each component of the
application and the group who is responsible to develop them.

 Map what requirements are verified in what test phase.

 Establish the criteria for evaluating the test results of each test phase.

 Make an initial determination of the resources necessary to accomplish

the testing.
 Identify the appropriate person or group to conduct each type of testing

activity.

January 2002 Page 5-30 Requirements Definition Phase

Section 5: Requirements Definition Phase

Develop Project Test Plan

Deliverables
Continued:

Review Process:

Resources:

Tasks:

 Outline the test environment (hardware, software, test tools, and data)
needed to conduct the tests.

 Develop a preliminary schedule for executing the test activities.

Place a copy of the Project Test Plan in the Project Notebook.

Conduct structured walkthroughs to assure the Project Test Plan document
adequately describes all testing activities, test schedules, test products, test
Responsibilities, the testing lifecycle, and the required resources.

Templates for Project Test Plans and Acceptance Test plans are available on
the Research and Policy Web site at:

http://www.michigan.gov/dit

Preparation of the Project Test Plan involves the following tasks:

Identify Test Techniques
Identify Test Phases
Identify Test Environment Requirements

January 2002 Page 5-31 Requirements Definition Phase

http://www.michigan.gov/dit

Section 5: Requirements Definition Phase

Identify Test Techniques

Description:

The Project Test Plan should specify the testing techniques planned for the
project including the types of tests required, test documents, test methods,
and test data collection. Each test from unit through acceptance testing is
specified in terms of entrance and exit criteria and the expected level of
involvement from the project team, test group, and other functional areas.

Unit and integration tests with appropriate data must be developed to
exercise and validate all specified application requirements, functions, and
objectives. System and acceptance tests validate that the integrated system
meets the requirements.

Each type of test must use controlled computer generated or live data as
specified. The test data must be prepared to include values that will verify
the functional capabilities of the software test component, identify its
limitations and deficiencies (if any), exercise its capabilities, and verify that
the software component performs its intended function as required.

If pilot testing or a phased implementation is required for the software
product, the Project Test Plan should include such requirements. In the case
of an implementation involving phased software releases, the plan should
include the requirements for regression testing of the complete application as
new elements are introduced.

For each type of test conducted, the test results are compared with the
expected results. Discrepancies are identified and any problems resolved.
Retesting is required to verify that the problem solution eliminates the
problem and does not introduce new errors. A completed test results/error
log form accompanies the final test results. This form is completed by the
individual(s) responsible for testing and attached to the documents that
certify the completion of each type of test.

January 2002 Page 5-32 Requirements Definition Phase

Section 5: Requirements Definition Phase

Identify Test Phases

Description:

The software product should be tested in four sequential phases: unit,
integration, system, and acceptance. Some projects may require additional
types of tests (such as prototype testing for offsite installations). The five test
phases are described below:

1. Unit Test Phase: The unit test phase involves testing of the individual
software units or groups of related units. A unit is a component that is not
subdivided into other components; it is a logically separable part of a
computer program. Evaluate each unit of code on how well it meets the
performance requirements for which it was designed.

Consider timing, memory, accuracy in producing numerical and logical
results; and the preparation of input and output required for validating
program logic, syntax, and performance requirements. This test phase is
performed by the programmer(s) responsible for writing the code.

2. Integration Test Phase: Integration testing is an orderly progression of
testing in which software elements, hardware elements, or both are combined
and tested to evaluate the interaction between them. Each program/module
must be tested. Integration testing is required to validate that groups of
related programs, when combined to establish an integrated functional
module of code, interface properly, and perform the software functions for
which they were designed. Examine the source program/module statements
to ensure that the program logic meets the requirements of the design and
that the application satisfies an explicit functional requirement. The project
team performs this test phase.

3. System Test Phase: The system test phase tests the integrated hardware
and software to verify that the software product meets its specified
requirements and operates successfully on the host platform. This test phase
is required to validate, when the entire software product is loaded onto the
host platform, that the proper initialization is performed; decision branching
paths are appropriate; and all software functions are performed as specified
in the Software Requirements Specification. System testing validates that the
software product develops the required outputs and interfaces properly with
other systems with which the software product gives or receives data; that
transaction response times meet customer expectations; and machine
resource allocation and utilization are within expected norms. This test phase
can be performed by the project team or by an independent test group with
support from the project team.

4. Acceptance Test Phase: Acceptance testing is conducted to determine
whether a software product satisfies its acceptance criteria and to enable the
system owner's organization to determine whether to accept the software
product. The acceptance test is required to validate that the software, its
related documentation, tools, and hardware, satisfy all of the specified
requirements and objectives of the system owner's organization, SOM and
agency standards, the requirements specification, and the design criteria.
Acceptance testing will include tests of all intrasystem interfaces; and the
use of all manuals, documentation, procedures, and controls. The project
team can perform this test phase with system owner and customer observers
or by system owner and customer representatives with support from the
project team.

January 2002 Page 5-33 Requirements Definition Phase

Section 5: Requirements Definition Phase

Identify Test Phases

Description
Continued:

5. Prototype Testing: In addition to the four test phases, a prototype or site
test can be used when software must be physically transported, installed, and
made operational at a computer facility other than at the site(s) where the
acceptance test was conducted. When required, this test is conducted at
selected customer location(s) that will totally test the software product under
"live" conditions with customers and support personnel.

Note: Unit test, integration test, and system test may be contained within a
single Project Test Plan.

January 2002 Page 5-34 Requirements Definition Phase

Section 5: Requirements Definition Phase

Identify Test Environment Requirements

Description:

The Project Test Plan should outline what is needed to perform testing
activities throughout the project lifecycle including personnel, hardware,
software, space, and other environmental requirements. As much testing as
possible should be performed on the same equipment that will be used for
the production system. In many cases, this information is not fully known
until the System Design Phase.

The following are some of the considerations for test environment
requirements:

 Evaluate automated testing tools for the following:

- Generation of test scripts
- Creation of result and error repositories
- Consideration of each tool's benefits and costs
- Use of simulators

 Determine local area network, wide area network, and metropolitan area

network testing environment(s), as needed

 Determine test lab, data generation, and error correction support

 Identify Beta test sites

January 2002 Page 5-35 Requirements Definition Phase

Section 5: Requirements Definition Phase

Develop Acceptance Test Plan

Responsibility:

Description:

Deliverables:

Project Team

The Acceptance Test Plan is a description of the test activities planned for
project acceptance. The Acceptance Test Plan should establish the testing
necessary to validate that the project requirements have been met and that
the deliverables are at an acceptable level in accordance with existing
standards. The plan also assures that a systematic approach to acceptance
testing is established and that the testing is adequate to verify the
functionality of the software product.

The complete set of system requirements and acceptance criteria form the
basis for determining the overall approach to acceptance testing and the
specific testing and examination methods. Features of the installation site
and the software system affect how the software acceptance testing will be
done. Unique arrangements may be necessary when the software cannot be
completely installed and executed in a live environment. Multiple
configurations may have to be distributed at several installation sites.

When a new system is a replacement for one already in use, the acceptance
test must assure the integrity of the customers business operations while
placing the replacement into operation. For example, the old system and the
new system are used in parallel until complete functionality has been
verified. In some cases, the acceptance process may take several months to
assure that a complete business or accounting cycle has occurred. This
concern will influence the approach to software acceptance testing.

Software acceptance testing must be documented carefully with traceability
of test cases to the software requirements and acceptance criteria established
by the system owner. As a minimum, the acceptance test plan should address
the following requirements:

 Identification of the personnel involved in the acceptance test process

and their testing responsibilities. If individuals outside of the project
team perform acceptance testing, include the responsibilities and
relationships of external test groups.

 Traceability of test designs and cases to software requirements.

 The objectives and constraints for each test.

 Complete test cases and test procedures including inputs and expected

outputs for each test case.

 Descriptions of error reporting, analysis, and resolution.

 Location(s) where testing will occur, the testing approach, type of

facilities, and tester training.
 Acquisition of special purpose testing equipment, tools, and software.

 Resources and cost estimation to accomplish testing.

January 2002 Page 5-36 Requirements Definition Phase

Section 5: Requirements Definition Phase

Develop Acceptance Test Plan

Review Process:

Resources:

Place a copy of the draft Acceptance Test Plan in the Project Notebook. The
draft plan will be reviewed during the Software Integration and Testing
Phase and delivered as a final document.

Conduct structured walkthroughs to assure the draft Acceptance Test Plan
adequately describes all testing activities, test schedules, test products, test
responsibilities, the testing lifecycle, and the required resources.

A template of the Acceptance Test Plan is available on the Research and
Policy Web site at: http://www..michigan.gov/dit

January 2002 Page 5-37 Requirements Definition Phase

Section 5: Requirements Definition Phase

Select Design Technique

Responsibility:

Description:

Deliverables:

Review Process:

Project Team

A systematic approach for building the functional and system designs for the
software product simplifies the process and results in a software product that
is testable, reliable, and maintainable. A complete design technique includes
the following elements:

 A technique that is compatible with the requirements analysis technique

and any automated tools used by the project team.

 Simple rules that relate information obtained during requirements

analysis to a distinct software structure.

 Design standards that comply with the site's current software

development practices, the system owner organization's standards, and
the constraints imposed by the software and hardware tools used by the
project team.

 A practical approach to design that is agreeable to a wide variety of

software products.

 The development of small, intermediate design products that can be

used to measure quality and progress.

 An evolution process from functional to system design.

 Well-defined measures to assess the quality of the design.

 Guidance on how to detect and correct design features that reduce

maintainability and reusability.

Automated tools that directly support the technique can significantly
enhance the value of a design technique. Automated tools provide assistance
in generating, maintaining, and analyzing design diagrams and data
dictionaries. The use of such tools typically results in a design that is easier
to maintain, higher in quality, and more complete than designs developed
without automated tools. The increased quality leads to significant
productivity gains during software programming and testing.

Create a description of the design technique and distribute it to the project
team, system owner, and customers. Place a copy of the design technique
description in the Project Notebook.

Conduct a structured walkthrough to verify that the design technique is
appropriate for the scope and objectives of the project. A structured
walkthrough is not needed when the technique has been used successfully on
similar projects for the same system owner/customer computing
environment.

January 2002 Page 5-38 Requirements Definition Phase

Section 5: Requirements Definition Phase

Select Design Technique

Illustration of Design Methods:

The following is an illustration of some common design techniques:

 Function-oriented design methods model the software product by breaking it into components, identifying the

inputs required by those components, and identifying the outputs developed by them. Function-oriented design
methods include structured analysis and structured design. The major models or design representations used by
this method are data flow diagrams, data dictionaries, structure charts, and process specifications.

 Data-oriented design methods use program structures that are derived from the data structures. Tree diagrams

are typically used to represent both the data and the program structures.

 Object-oriented design methods develop a software architecture based on the objects manipulated by systems or

subsystems rather than by functions. An object-oriented design closely resembles a model of reality since it
captures the real-world objects and the operations taken by or upon them. The design structure tends to be
layers of abstraction where each layer represents a collection of objects with limited visibility to other layers.

January 2002 Page 5-39 Requirements Definition Phase

Section 5: Requirements Definition Phase

Revise Project Plan

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once the requirements are baselined, determine if the project estimates for
resources, cost, and schedule need to be revised and if the selected
development approach is still appropriate for the size and complexity of the
project.

Review the Project Plan for accuracy and completeness of all Requirements
Definition Phase activities and make any changes needed to update the
information. Expand the information for the Functional Design Phase to
reflect accurate estimates of resources, costs, and hours.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to assure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the Functional Design Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

January 2002 Page 5-40 Requirements Definition Phase

Section 5: Requirements Definition Phase

Conduct Project Reviews

Conduct Structured Walkthroughs
Responsibility:

Description:

SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the Requirements Definition Phase, schedule at least one structured
walkthrough to review each of the Requirements Definition Phase
deliverables, i.e., Continuity of Operations Statement/Plan, Software
Requirements Specification, Project Test Plan, and draft of the Acceptance
Test Plan.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the Requirements Definition Phase Exit
process. Additional IPAs can be performed during the phase, as appropriate.
An IPA is recommended after the completion of the Software Requirements
Specification.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct Requirements Definition Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

Schedule the Phase Exit as the last activity of the Requirements Definition
Phase. It is the responsibility of the project manager to notify the
appropriate participants when a project is ready for the Phase Exit process
and to schedule the Phase Exit meeting. All functional areas and the Quality
Assurance representative involved with the project should receive copies of
the deliverables produced in this phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 5-41 Requirements Definition Phase

Section 5: Requirements Definition Phase

Records Retention and Disposition

Responsibility:

Description:

Deliverables:

Project Manager, Records Analyst, Developer, Customer Coordinator,
Data Administrator

Record retention and disposition issues must be identified during the
requirements definition phase so the system is designed to implement legal
record retention requirements.

Contact the Department of Management and Budget, Records Management
Division to have a Retention and Disposal Schedule developed and
approved for all related data, inputs, outputs and systems documentation.

• See Procedures 0910.01, 0910.02 and 0920.04.
• See the State of Michigan Records Management Manual.

http://www.michigan.gov/hal/0,1607,7-160-17451_18673_19379---
,00.html

Identify the legal retention requirements that are imposed upon the system
to be developed:

 What business process does the system support? Do any state or

federal laws and/or regulations apply to the data?

 How is data entered into the system? How long do input documents

need be retained after the data is entered into the system?

 What data and metadata from this system is necessary to provide

complete evidence of a transaction? Do any laws or regulations
specify the structure (including medium, format, relationships) of the
record or transaction or any of its components?

 What standard outputs does the customer intend to generate? What

format will these outputs be in (electronic, paper, COM, COLD, etc.)?
How long do the outputs need to be retained?

 What information (manuals, forms, procedures, etc.) is necessary to

interpret the contents of the record?

 Is any of the data exempt from public disclosure according to FOIA or

some other law or regulation?

 How will the record be reproduced to meet the needs of internal and

external customers? What record reproduction formats will be used?

 How long does data need to reside in the system? If data will be

purged, how frequently should this occur?

 How will data that is eligible for disposition be identified by the

system? How will this data be purged from the system so that it cannot
be recovered using the active system or the backup system?

 Will legacy data be input into the system? What are the sources of this
legacy data?

January 2002 Page 5-42 Requirements Definition Phase

Section 5: Requirements Definition Phase

Records Retention and Disposition

Deliverables
Continued:

 If data will be retained for more than five years (or permanently) it will

eventually be necessary to migrate the data to ensure ongoing
accessibility of the data? Is migration the best option for ensuring
continued accessibility?

 Does the data have permanent value to the creating agency? Has the

State Archives of Michigan been consulted to determine if the data has
permanent historical value? What documentation will be needed to
ensure continued access to the data?

 What portions of the system might be targeted by a lawyer or the

Attorney General during litigation or by an auditor?

 Has a formal risk assessment of the system been completed?

 Has a disaster prevention and recovery plan been developed?

DMB 504 “Records Retention and Disposal Schedule”

January 2002 Page 5-43 Requirements Definition Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 6

FUNCTIONAL DESIGN PHASE

Section 6: Functional Design Phase

Table of Contents

Functional Design Phase .. 6-0

Highlights of Phase .. 6-1
Overview ... 6-2
Determine Software Structure .. 6-3
 Identify Design Entities ... 6-4
 Identify Design Dependencies ... 6-5
Design Content of System Inputs and Outputs ... 6-6
Design Customer Interface ... 6-7
 Design Menu Hierarchy .. 6-9
 Design Data Entry Screens .. 6-11
 Design Display Screens .. 6-12
 Design Online Help .. 6-14
 Design System Messages .. 6-15
Design System Interfaces .. 6-16
Design System Security Controls .. 6-17
Build Logical Model .. 6-18
Build Data Model ... 6-19
Develop Functional Design .. 6-21
 Develop Functional Design Document ... 6-22
 Conduct Functional Design Review ... 6-23
Initiate Procurement of Hardware and Software .. 6-26
Revise Project Plan ... 6-27
Conduct Project Reviews ... 6-28

November 2001 Page 6-i Functional Design Phase

Section 6: Functional Design Phase

Highlights of Phase

Forms Utilized

Functional Design Document

Methods and Tools

Define requirements for:

Data flowing in and out of system -
hardcopy, and softcopy
Processes required for the processing of
data - manual and automated
Storage required - structure of data,
relationships between data and size of files

Choose solution considering:

Technological feasibility
Cost / Benefit analysis
Operational feasibility

Key Activities:

Determine Software Structure
Design Content of System Inputs and Outputs
Design Customer Interface
Design System Interfaces
Design System Security Controls
Build Logical Model
Build Data Model
Develop Functional Design
Initiate Procurement of Hardware and Software
Revise Project Plan
Conduct Structured Walkthrough(s)
Conduct In-Phase Assessment
Conduct Functional Design Phase Exit

Outputs:

 Design records
 Logical model
 Data Dictionary
 Requirements Traceability Matrix (expanded)
 Functional Design Document
 Minutes from Functional Design Review
 Hardware and software procurement records
 Project Plan (revised)

Inputs:

 Project Notebook
 Software Configuration Management Plan

(draft)
 Continuity of Operations Statement/Plan
 Data Dictionary
 Requirements Traceability Matrix
 Software Requirements Specification
 Project Test Plan
 Acceptance Test Plan (revised)
 Design methodology
 Project Plan (revised)
 Software Quality Assurance Plan

Functional Design Phase

November 2001 Page 6-1 Functional Design Phase

Section 6: Functional Design Phase

Overview

Description:

1) What to do;
2) How to do it;
3) Define structure of
 software product;
4) Logical system flow;
5) Data organization;
6) Systems inputs;
7) System outputs;
8) Processing rules;
9) Operational characteristics

The functional design process maps the "what to do" of the Software
Requirements Specification into the "how to do it" of the design
specifications. During this phase, the overall structure of the software
product is defined from a functional viewpoint. The functional design
describes the logical system flow, data organization, system inputs and
outputs, processing rules, and operational characteristics of the software
product from the customer's point of view. The functional design is not
concerned with the software or hardware that will support the operation of
the software product, or the physical organization of the data or the programs
that will accept the input data, execute the processing rules, and produce the
required output.

The focus is on the functions and structure of the components that comprise
the software product. The goal of this phase is to define and document the
functions of the software product to the extent necessary to obtain the system
owner and customers understanding and approval and to the level of detail
necessary to build the system design. Prototyping of system functions can be
helpful in communicating the design specifications to the system owner and
customers. Prototypes can be used to simulate one function, a module, or the
entire software product. Prototyping is also useful in the transition from the
functional design to the system design.

Review Process:

SDLC References:

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Section 2 Lifecycle Model. In addition, a
Preliminary Design Review will be conducted. This review is an important
milestone in the design process. The time and resources needed to conduct
the walkthroughs and Functional Design Review should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model, Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 6-2 Functional Design Phase

Section 6: Functional Design Phase

Determine Software Structure

Responsibility:

Description:

Deliverables:

Review Process:

Tasks:

Project Team Analysts

A hierarchical approach is useful for determining the structure and
components of the software product. Software system decomposition is one
hierarchical approach that divides the software system into different levels of
abstraction. Decomposition is an iterative process that continues until single
purpose components (i.e., design entities or objects) can be identified.
Decomposition is used to understand how the software product will be
structured, and the purpose and function of each entity or object.

The goal of the decomposition is to create a highly cohesive, loosely
coupled, and readily adapted design. A design exhibits a high degree of
cohesion if each design entity in the program unit is essential for that unit to
achieve its purpose. A loosely coupled design is composed of program units
that are independent or almost independent.

Several reliable methods exist for performing system decomposition. Select
a method that enables the design of simple, independent entities. Functional
and object-oriented designs are two common approaches to decomposition.
These approaches are not mutually exclusive. Each may be applicable at
different times in the design process.

Refer to each task for applicable deliverables.

Refer to each task for applicable review processes.

The software system decomposition activity includes the following tasks:

Identify Design Entities
Identify Design Dependencies

November 2001 Page 6-3 Functional Design Phase

Section 6: Functional Design Phase

Identify Design Entities

Description:

Characteristics:

Design entities result from a decomposition of the software product
requirements. A design entity is an element (or object) of a design that is
structurally and functionally distinct from other elements and is separately
named and referenced. The number and type of entities required to partition
a design are dependent on a number of factors, such as the complexity of the
software product, the design method used, and the programming
environment. The objective of design entities is to divide the software
product into separate components that can be coded, implemented, changed,
and tested with minimal effect on other entities.

A design entity attribute is a characteristic or property of a design entity. It
provides a statement of fact about an entity. The following are common
characteristics that should be considered for each design entity.

 Assign a unique name to each entity.

 Classify each entity into a specific type. The type may describe the

nature of the entity, such as a subprogram or module; or a class of
entities dealing with a particular type of information.

 Describe the purpose or rationale for each entity. Include the specific

functional and performance requirements for which the entity was
created.

 Describe the function to be performed by each entity. Include the

transformation applied to inputs by the entity to produce the desired
output.

 Identify all of the external resources that are needed by an entity to

perform its function.

 Specify the processing rules each entity will follow to achieve its

function. Include the algorithm used by the entity to perform a specific
task and contingency actions in case expected processing events do not
occur.

Deliverables:

Review Process:

 Describe the data elements internal to each entity. Include information
such as the method of representation, format, and the initial and
acceptable values of internal data. This description may be provided in
the data dictionary.

Maintain a record of all design entities. The records will be integrated into
the Functional Design Document. Place a copy of the design entity
information in the Project Notebook.

Schedule structured walkthroughs to verify that the design entities are
correct, complete, and possess the required characteristics.

November 2001 Page 6-4 Functional Design Phase

Section 6: Functional Design Phase

Identify Design Dependencies

Description:

Deliverables:

Review Process:

Design dependencies describe the relationships or interactions between
design entities at the module, process, and data levels. These interactions
may involve the initiation, order of execution, data sharing, creation,
duplication, use, storage, or destruction of entities.

Identify the dependent entities of the software system design, describe their
coupling, and identify the resources required for the entities to perform their
function. Also define the strategies for interactions among design entities
and provide the information needed to perceive how, why, where, and at
what level actions occur.

Dependency descriptions should provide an overall picture of how the
software product will work. Data flow diagrams, structure charts, and
transaction diagrams are useful for showing the relationship among design
entities.

The dependency descriptions may be useful in producing the system
integration plan by identifying the entities that are needed by other entities
and that must be developed first. Dependency descriptions can also be used
to aid in the production of integration test cases.

Add specific dependency information to the design entity records. The
records will be integrated into the Functional Design Document. Place a
copy of the dependency information in the Project Notebook.

Schedule structured walkthroughs to verify that the design entities and
dependencies are correct, complete, and possess the required characteristics.

November 2001 Page 6-5 Functional Design Phase

Section 6: Functional Design Phase

Design Content of Systems Input and Output

Responsibility:

Description:

Steps:

Project Team Analysts

Design the content and format for each of the software product inputs and
outputs based on the system input and output requirements identified during
the Requirements Definition Phase. Involve the system owner and customers
in the design process to make certain that their needs and expectations are
being met.

Use the following steps to implement the design process:

 Identify the types of electronic and printed input that will be accepted by

the software product, such as data entered manually from source
documents and files or records extracted from other systems.

 Identify the types of electronic and printed output that will be developed

by the software product; such as data, records, or files; screen displays;
and printed reports. Also identify the output that will be exported to
other systems.

 Identify the specific input and output items that already exist and the

items that will be created for input or output as part of the software
product.

 Assign a name to each type of input and output and describe each item

from a functional perspective.

 Identify the system owner/originator of each type of input and output.

 Identify the frequency of each type of input and output.

 Design the content and format for each new input and output item or

modify the format of existing items that must be changed to
accommodate the new software product.

Deliverables:

Review Process:

Document the design for the system inputs and outputs in accordance with
the project design standards. Discuss the designs with the system owner and
customers and submit completed designs for their review and approval. The
approved designs will be incorporated into the Functional Design Document.
Place a copy of the system input and output designs in the Project Notebook.

Schedule a structured walkthrough to verify that the system input and output
designs are correct and complete.

November 2001 Page 6-6 Functional Design Phase

Section 6: Functional Design Phase

Design Customer Interface

Responsibility:

Description:

Basic Guidelines:

Basic Guidelines

Project Team Analysts

Design a customer interface that is appropriate for the customers, content,
and operating environment for the software product. Determine interface
levels for all categories of customers. For interactive customer environments,
prototype the customer interface. Arrange for customers to experiment with
the prototypes so that design weaknesses in the interface can be identified
and resolved early. Use prototypes to gain customer acceptance of the
interface.

If the site or system owner's organization has an existing customer interface
standard, this standard should be used to specify the customer interface for
every software product developed for that organization. A customer interface
standard should be developed and maintained for each organization that does
not have one.

Review the standard each time a new software product is planned to verify
that the customer interface is compatible with the software product's selected
system architecture. For example, some Windows NT -based customer
interface standards would not be appropriate for a Windows 2000-based
software product.

The following basic guidelines can help improve the software product
customer interface when there is graphical, command-based, menu-driven, or
block mode features:

 Give customers control. Let them choose actions to perform.

 Give customers feedback and progress reports. Tell them when the

system is working and when an action is completed.

 Make sure programs, windows, and functions are consistent within and

with other components of the software product.

 Be consistent in the format and wording of text.

 Keep it simple. White space is as important on the screen as on the

printed page. Reduce screen clutter.

 Use special effects carefully and sparingly. Be sure color screens also

work in one color--some customers are colorblind, and some customers
have monochrome monitors. Use color consistently. Beeps and other
sounds can be annoying; so let customers turn sound off.

 Put information where it can be easily seen; avoid information in

corners or borders.

 Limit the amount of information customers must know. Offer choices

instead of making customers remember and manually enter information.
Provide defaults, and make sure they are logical and satisfy a large
number of customers.

 Offer shortcuts. Keyboard shortcuts (e.g., hot keys) and command

November 2001 Page 6-7 Functional Design Phase

Section 6: Functional Design Phase

Design Customer Interface

Continued:

Deliverables:

Review Procedures:

Tasks

abbreviations help experienced customers work more quickly.

 Help customers get out of trouble. Provide messages that are

understandable and that offer solutions.

 Let customers reverse their actions. If an action will destroy something,

identify the object of destruction and wait for a response.

Refer to each task for applicable deliverables.

Refer to each task for applicable review processes.

The following tasks are involved in specifying the customer interface:

 Design Menu Hierarchy
 Design Data Entry Screens
 Design Display Screens
 Design Online Help
 Design System Messages

November 2001 Page 6-8 Functional Design Phase

Section 6: Functional Design Phase

Design Menu Hierarchies

Description:

Use the following guidelines to improve the design of menu hierarchies:

 Choose an organizing principle for the menu options, such as:

- Expected frequency of use
- Logical sequence of operations
- Alphabetical order (should be used for horizontal word menus

with five or more words)

 Put a meaningful title at the top of every menu.

 For full-screen menus, provide symmetric balance by centering the title

and the menu options around the center axis of the screen.

 To facilitate scanning, put blank lines between logical groupings of

menu options and after about every fifth option in a long list.

 Limit the number of menu choices to one screen.

 Select icons that are intuitive to the function they represent.

 Use a menu option selection method that is consistent with the

technology available at the customer's workstation and the size of the
software product being designed, such as:
- Numbers
- Letters or letter combinations
- Cursor movement

 Provide a way for the customer to leave the menu without performing

any action. Be sure that the option to leave the menu describes the
consequences of its selection.

 Words used for menu options should follow these rules:

- Use words that clearly and specifically describe what the
customer is selecting.

- Use common English words rather than computer or technical
jargon. When space permits, spell out words completely.

- Use simple, active verbs to tell customers what actions will
result from their choice. Try to start each option with a verb.

- Use parallel construction to describe the options.

November 2001 Page 6-9 Functional Design Phase

Section 6: Functional Design Phase

Design Menu Hierarchies

Description
Continued

Deliverables:

Review Process:

 Minimize the highlighting used on a menu. Highlighting should be
limited to situations where the customer needs to know that there is an
exception to the normal practice.

 Do not require the customer to enter leading or trailing blanks or zeros,

and do not include a default value on a menu.

 Display the menu options in mixed letters (i.e., upper and lower case).

 Organize menu hierarchies according to the tasks customers will

perform, rather than the structure of the software modules.

Document the design for the menu hierarchy in accordance with the project
design standards. Discuss the design with the system owner and customers
and submit the completed design for their review and approval. The
approved design will be incorporated into the Functional Design Document.
Place a copy of the menu hierarchy design in the Project Notebook.

Conduct a structured walkthrough to ensure that the menu hierarchy design
is complete and logical.

November 2001 Page 6-10 Functional Design Phase

Section 6: Functional Design Phase

Design Data Entry Screens

Description:

Use the following guidelines to improve the design of data entry screens:

 When the customer must transcribe data directly from a source

document to the screen, the layout of the screen should be similar to the
layout of the source document.

 Group data fields into logical categories on the screen; provide a header

that describes the contents of each category.

 Make areas of the screen that are not needed for data entry or commands

inaccessible to the customer.

 Do not require the customer to enter information that is already

available to the software or can be computed by it.

 Do not require the customer to enter dimensional units, leading or

trailing blanks, or zeros.

 Allow the customer to enter data by character replacement.

 Put a caption describing the data to be entered adjacent to each data

field; incorporate memory joggers into the caption.

 Justify data entries automatically.

 Display default values in data fields when appropriate.

 Provide context-sensitive help for data entry fields.

Deliverables:

 Review Process:

Document the designs for the data entry screens in accordance with the
project design standards. Discuss the design with the system owner and
customers and submit the completed designs for their review and approval.
The approved designs will be incorporated into the Functional Design
Document. Place a copy of the data entry screen designs in the Project
Notebook.

Conduct a structured walkthrough to assure that the data entry screen designs
are consistent, complete, and logical.

November 2001 Page 6-11 Functional Design Phase

Section 6: Functional Design Phase

Design Display Screens

Description:

Use the following guidelines to design display screens that are easy to use
and understand:

 Put a title on every display screen. The title should clearly and

specifically describe the contents of the screen.

 Display only information that the customer needs to know.

 Display data to the customer in directly usable form.

 Provide symmetric balance to displays by centering titles and headings

and by placing information on both sides of the center axis.

 Every display should indicate how to exit from the screen. Use

consistent exit procedures.

 When the display continues over multiple screens, the screen should

indicate where the customer is in the display (e.g., Screen 1 of 3).

 Data fields need to be grouped into logical categories or according to the

structure of a source document (when there is one).

 Be consistent in the use of words and special characters.

 Display text conventionally in mixed letters (i.e., upper and lower case)

and with appropriate punctuation. Avoid all uppercase letters. Put a
blank line between paragraphs.

 Left justify text, and leave a ragged right margin.

 Avoid hyphenation of words between lines.

 Use abbreviations and acronyms only when they are significantly

shorter than the full text and when the customer will understand them.

Table and List
Guidelines:

 Be consistent with the format of information being displayed.

 Consider the skills of the customers and the information they will

manipulate when information is displayed in multiple windows.

Use the following guidelines to improve the design of online tables and lists:

 Put a meaningful label on the columns and, if appropriate, the rows of

tables and lists. Continue the labels when a table or list extends over
more than one screen.

 If data items are continued on subsequent screens, the labels should be

added to each screen.

November 2001 Page 6-12 Functional Design Phase

Section 6: Functional Design Phase

Design Display Screens

Table and List
Guidelines
Continued:

 If data items are scrolled, the labels should be fixed on the screen and
not be part of the scrolled area (they remain in place as the body of the
table or list changes).

 Arrange the items in a table or list in some recognizable order to

facilitate scanning.

 Put items in a multiple column list in vertical columns that are read from

left to right on the screen.

 Left justify columns of alphabetic data; right justify columns of numeric

data or align them by the decimal point or other delimiter.

 Insert a blank line after about every fifth row in a long column.

 Insert a minimum of two spaces between the longest item in a column

and the beginning of the next column.

 When listed items are labeled by number start with a one (1) not a zero

(0).

Deliverables:

Review Process:

Document the design for the display screens in accordance with the project
design standards. Discuss the designs with the system owner and customers
and submit the completed designs for their review and approval. The
approved designs will be incorporated into the Functional Design Document.
Place a copy of the display screen designs in the Project Notebook.

Conduct a structured walkthrough to ensure that the display screen designs
are consistent, complete, and logical.

November 2001 Page 6-13 Functional Design Phase

Section 6: Functional Design Phase

Design Online Help

Description:

Guidelines:

Online help is typically requested by customers when they want to perform a
new, complex, or infrequently used procedure, or when they do not know
what else to do. The text of online help messages needs to be planned,
drafted, and evaluated as carefully as print documentation. In addition, the
layout and format of online help must be designed to deal with the special
constraints imposed by the video screen.

Use online help to explain concepts, procedures, messages, menu choices,
commands, words, function keys, and formats. Work with the customers to
identify the level of detail needed for online help. Determine whether the
customers need a one-line message at the bottom of the screen or a full
online explanation with successive levels of detail.

Effective online help messages tell customers what the software product is
doing, where they are in the sequence of screens, what options they have
selected, and what options are available.

The following guidelines can improve the design of online help:

 Write online help messages in plain English.

- Straightforward and reads as if it were spoken.
- Clear, direct, and simple.
- Effectively organized with a concern for what customers need

to know.

 Address the customer directly as "you"; use the active voice.

 Use simple action verbs to describe procedures. Do not use nouns to

replace pronouns, verbs, and adjectives.

 Describe procedures in logical order.

Deliverables:

Review Process:

 Provide a direct route back to the function or task being performed.

 Whenever possible display help text on the screen with the function or

task that is being performed.

Document the design for online help in accordance with the project design
standards. Discuss the design with the system owner and customers and
submit the completed design for their review and approval. The approved
design will be incorporated into the Functional Design Document. Place a
copy of the online help design in the Project Notebook.

Conduct a structured walkthrough to ensure that the online help design is
consistent, complete, and logical.

November 2001 Page 6-14 Functional Design Phase

Section 6: Functional Design Phase

Design System Messages

Description:

System messages are the various types of information that the system
provides to the customer such as status messages, prompts, and error
messages.

Status Messages: Status messages are important for giving customers the
feeling they are in control of the software. They tell customers what the
software is doing, where they are in the sequence of screens, what options
they have selected, and what options are available.

Prompts: Prompts inform the customer to type data or commands or to make
a simple choice:

 Use prompts to ask the customer to make a simple choice or to enter

data or commands. Be as specific as possible.

 Include memory aids in the prompt to help customers type a response in

the proper format and order, initiate infrequently used processes, or
clearly identify exceptions to normal practice.

 When defaults are allowed with prompts, indicate clearly which default

value will be initiated.

Error Messages: Error messages should allow customers to recover from
mistakes by making it clear what the mistake was and how to correct it.
Error messages need to be specific about why a mistake was made:

 Design the software product to check for obvious errors.

 Be as specific as possible in describing the cause of an error. Do not use

error codes.

 Do not assign blame to the customer or the software in an error message.

Use a neutral tone.

 Whenever possible, the error message should indicate what corrective

action the customer needs to take.

Deliverables:

Review Process:

 Be consistent in the format, wording, and placement of messages.

 Consider describing error messages at more than one level of detail.

Document the design for the system messages in accordance with the project
design standards. Discuss the designs with the system owner and customers
and submit the completed designs for their review and approval. The
approved designs will be incorporated into the Functional Design Document.
Place a copy of the system message designs in the Project Notebook.

Conduct a structured walkthrough to ensure that the system message designs
are consistent, complete, and logical.

November 2001 Page 6-15 Functional Design Phase

Section 6: Functional Design Phase

Design System Interface

Responsibility:

Description:

Sample Issues:

Deliverables:

Review Process:

Project Team Analysts

Develop a design depicting how the software product will interface with
other systems based on the system interface requirements identified in the
Requirements Definition Phase. Submit the applicable interface designs for
review by the system owner or system administrator for each system that
will interface with the software product. Any incompatibilities with the
interfaces will be identified early in the design process and corrective actions
can be initiated to assure each interface is properly designed and coded.

The following list provides some of the issues that should be considered
when designing the system interfaces:

 System inputs and outputs
 Method of interface
 Volume and frequency of data
 Platform of interfacing system
 Format of data
 Automatic or manual initiation of interface
 Need for polling device(s)
 Verification of data exchange
 Validation of data

Document the design(s) for the system interfaces in accordance with the
project design standards. Discuss the designs with the system owner and
customers and submit completed designs for their review and approval. The
approved designs will be incorporated into the Functional Design Document.
Place a copy of the system interface designs in the Project Notebook.

Schedule a structured walkthrough to verify that the system interface designs
are correct and complete.

November 2001 Page 6-16 Functional Design Phase

Section 6: Functional Design Phase

Design System Security Controls

Responsibility:

Description:

Steps:

Deliverables:

Review Process:

Project Team Analysts and Security Personnel

Design the security controls that will be incorporated into the software
product based on the security and access requirements identified during the
Requirements Definition Phase. Design the security controls in conjunction
with the site or system owner organization's security officer.

Use the following step to implement the design process:

 Identify the customers and organizations that will have access to the

software product. Indicate what access restrictions they will have. All
persons in a work area may not have the same security access level.
Measures should be taken to assure that unauthorized individuals do not
access sensitive materials and software requiring protection.

 Identify controls for the software product, such as the customer
identification code for system access and the network access code for
the network on which the software product will reside.

 Identify whether access restrictions will be applied at the system,
subsystem, transaction, record, or data element levels. Classified
information must be protected in accordance with agency directives.

 Identify physical safeguards required to protect hardware, software, or
information from natural hazards and malicious acts.

 Identify communications security requirements.

Document the design for the system security controls in accordance with the
project design standards. Discuss the design with the system owner and
customers and submit the completed design for their review and approval.
The approved design will be incorporated into the Functional Design
Document. Place a copy of the system security control design in the Project
Notebook.

Schedule a structured walkthrough to verify that the system security controls
are correct and complete. Include the security officer in the walkthrough.

November 2001 Page 6-17 Functional Design Phase

Section 6: Functional Design Phase

Build Logical Model

Responsibility:

Description:

Deliverables:

Review Process:

Project Team Analysts

The logical model defines the flow of data through the software system and
determines a logically consistent structure for the software. Each module that
defines a function is identified, interfaces between modules are established,
and design constraints and limitations are described. The focus of the logical
model is on the real-world problem or need to be solved by the software
product.

A logical model has the following characteristics:

 Describes the final sources and destinations of data and control flows

crossing the system boundary rather than intermediate handlers of the
flows.

 Describes the net transfer of data across the system boundary rather than
the details of the data transfer.

 Provides for data stores only when required by an externally imposed
time delay.

When building a logical model, the organization of the model should follow
the natural organization of the software product's subject matter. The names
given to the components of the model should be specific. The connections
among the components of the model should be as simple as possible.

The logical model should be documented in customer terminology and
contain sufficient detail to obtain the system owner's and customers'
understanding and approval. Use data flow diagrams to show the levels of
detail necessary to reach a clear, complete picture of the software product
processes, data flow, and data stores.

Maintain the logical model and data flow diagrams for incorporation into the
Functional Design Document. Place a copy of the logical model and data
flow diagrams in the Project Notebook. Keep the logical model and diagrams
up-to-date. They will serve as a resource for planning enhancements during
the Maintenance Phase, particularly for enhancements involving new
functions.

Schedule a structured walkthrough to verify that the logical model is correct,
logical, and complete.

November 2001 Page 6-18 Functional Design Phase

Section 6: Functional Design Phase

Build Data Model

Responsibility:

Description:

Deliverables:

Project Team Analysts

A data model is a representation of a collection of data objects and the
relationships among these objects. The data model is used to provide the
following functions:

 Transform the business entities into data entities.
 Transform the business rules into data relationships.
 Resolve the many-to many relationships as intersecting data entities.
 Determine a unique identifier (keys) for each data entity.
 Add the characteristics (facts) for each data entity.
 Document the integrity rules required in the model.
 Determine the data accesses (navigation) of the model.

The data dictionary started in the Requirements Definition Phase is expanded
in this phase to catalog every known data element used in the customer's
work and every system-generated data element. Data elements are
documented in detail to include characteristics, known constraints, input
sources, output destinations, and known formats.

The data dictionary can serve as a central repository of information for both
programmers and end customers. The dictionary can include business rules,
processing statistics, and cross-referencing information for multiple vendor
environments.

To expand the data dictionary, define, analyze, and complete data definitions
using the following steps:

 Identify data needs associated with various system features.
 Match (verify) data needs with the data dictionary.
 Match the data dictionary with specific data structures.

 Create data record layouts.
 Ensure that all data can be maintained through add, change, or delete

functions.

The data dictionary is further refined in the System Design Phase to
complete the information on data elements, entities, files, physical
characteristics, and data conversion requirements.

November 2001 Page 6-19 Functional Design Phase

Section 6: Functional Design Phase

Build Data Model

Sample
Characteristics:

Review Process:

The following is a sample of the type of characteristics (information) that
should be included for each element in a data dictionary:

 Long data name (full name)
 Short data name (abbreviation)
 Alias
 Data definition
 Owner(s)
 Occurrence(s)/key
 Program mode
 Input source(s); e.g., screens, external interfaces, system generated
 Output destination(s); e.g., screens, reports, external interfaces
 Values/meanings
 Protection/security
 Default value
 Length/precision
 Character set (type)
 Format
 Range
 Surface edits
 Remarks

Schedule a structured walkthrough to verify that the data dictionary is
correct and complete. The data model for a software application should be
validated against any Agency or site-specific data model.

November 2001 Page 6-20 Functional Design Phase

Section 6: Functional Design Phase

Develop Functional Design

Responsibility:

Description:

Deliverables:

Project Team

The software functional design describes how the software product will be
structured to satisfy the requirements identified in the Software
Requirements Specification. It is a description of the software structure,
components, interfaces, and data necessary before coding can begin.

The software functional design is a model or representation of the software
product that is used primarily for communicating software design
information to facilitate analysis, planning, and coding decisions. It
represents a partitioning of the software system into design entities and
describes the important properties and relationships among those entities.
Design descriptions may be developed as documents, graphic
representations, formal design languages, records in a data base management
system, and CASE tool dictionaries.

Within the functional design, the design entities can be organized and
presented in any number of ways. The goal of this activity is to compile the
design entities and their associated characteristics in a manner that facilitates
the access of design information from various viewpoints (e.g., project
management, configuration management, quality assurance, and testing).
Also, the design entities and their characteristics must be described in terms
that are understandable to the system owner and customers.

Each requirement identified in the Software Requirements Specification
must be traceable to one or more design entities. This traceability ensures
that the software product will satisfy all of the requirements and will not
include inappropriate or extraneous functionality. Expand the Requirements
Traceability Matrix developed in the Requirements Definition Phase to relate
the functional design to the requirements. Place a copy of the expanded
matrix in the Project Notebook. Refer to each task for other applicable
deliverables.

Review Process:

Tasks:

Conduct a structured walkthrough of the Requirements Traceability Matrix.

Refer to Section 6, Conduct Functional Design Review, for the review
process.

The following tasks are involved in developing the functional design:

Develop Functional Design Document
Conduct Functional Design Review

November 2001 Page 6-21 Functional Design Phase

Section 6: Functional Design Phase

Develop Functional Design Document

Description:

Deliverables:

Review Process:

SDLC Reference:

Resource:

The Functional Design Document defines the functions of the system in
customer terminology and provides a firm foundation for the development of
the system design. The Functional Design Document should be written from
the system owner/customers' perspective. This document provides the
owner/customers with an opportunity to review and provide input to the
software product design before system design work is completed.

Prepare a draft Functional Design Document. Use the designs developed for
inputs, outputs, customer and system interfaces, and security controls as
input to this document. Submit the draft document to the system owner and
customers for their review and approval. After making the changes needed to
resolve problems found during the review, the approved Functional Design
Document becomes an official agreement and authorization to use the
functional design as the basis for developing the system design. Place a copy
of the approved Functional Design Document in the Project Notebook.

Conduct structured walkthroughs as needed to assure that the Functional
Design Document is accurate, complete, and describes the functional design
in a manner that can be understood by the system owner and customers.

The completion of the draft Functional Design Document is an appropriate
time to schedule an In-Phase Assessment (IPA).

Appendix D, In-Phase Assessment Process Guide provides a description and
instructions for conducting an IPA.

A template of the Functional Design Document is available on the Web site
at: http://www.michigan.gov/dit.

November 2001 Page 6-22 Functional Design Phase

Section 6: Functional Design Phase

Conduct Functional Design Review

Description:

The Functional Design Review is a formal technical review of the basic
design approach. The primary goal of the Functional Design Review is to
demonstrate the ability of the software design to satisfy the project
requirements. The review should be a series of presentations by the project
team to the system owner, customers, functional area points-of-contact, and
Quality Assurance representative.

Conduct the Functional Design Review to perform the following
verifications:

 Evaluate the progress, technical adequacy, and risk resolution of the

selected design approach. Determine whether the project team is
following the approved design approach.

 Evaluate the progress, technical adequacy, and risk resolution of the

selected test approach. Review the following items:
- Organization and responsibilities of group conducting tests
- Project Test Plan
- Planned format, content, and distribution of test reports
- Planned resolution of problems and errors identified during

testing
- Retest procedures
- Change control and configuration management of test items
- Special test tools not required as deliverables

 Evaluate the techniques to be used to meet quality assurance

requirements.

 Establish the existence and compatibility of the physical and functional

interfaces.

 Determine whether the functional design embodies all of the software

product requirements.

 Verify that the design represents software that can meet the functional,

data, and interface requirements.

 Review the planned customer interfaces to the software. Examples of

the types of design information to review:

- Operating modes for each display station. For each mode, the
functions performed, the displays and controls used.

- The format and content standards for each screen (e.g., data locations,
spaces, abbreviations, the number of digits, all special symbols, alert
mechanisms).

- Control and data entry devices and formats (e.g., keyboards, special
function keys, and cursor control).

- The format of all data inputs and provisions for error detection and
correction.

- The format for all status and error messages and data printouts (e.g.,
formats, headings, data units, abbreviations, spacing, columns).

November 2001 Page 6-23 Functional Design Phase

Section 6: Functional Design Phase

Conduct Functional Design Review

Description
Continued:

Review Items:

 Demonstrate any rapid design prototypes used to make design decisions.

 Identify potential high-risk areas in the design and any requirements

changes that could reduce risk.

 Review to assure that consideration has been given to optimizing the

maintainability and maintenance aspects of the software product.

The following items should be considered for review and evaluation during
the Functional Design Review. Be prepared to discuss in technical detail any
of these items within the scope of the review:

 Functional flows. Indicate how the computer software functional flows

map the software and interface requirements to the individual high-level
components of the software product.

 Storage allocation data. Describe the manner in which available
storage is allocated to individual software components. Timing,
sequencing requirements, and relevant equipment constraints used in
determining the allocation should be included.

 Control functions. Describe the executive control and start/recovery

features of the software product.

 Component structure. Describe the high-level structure of the software

product, the reasons for choosing the components, the development
technique that will be used within the constraints of available computer
resources, and any support programs that will be required in order to
develop and maintain the software product and allocated data storage.

 Security. Identify the security requirements and provide a description of

the techniques to be used for implementing and maintaining security
within the software product.

 Computer facilities. Describe the availability, adequacy, and planned

utilization of the computer software facilities.

 Computer facility versus the operational system. Describe any unique

design features that exist in the functional design in order to allow use
within the computer software engineering facility that will not exist in
the operational software product. Provide information on the design of
support programs not explicitly required for the operational system that
will be generated to assist in the development of the software product.

 Development tools. Describe any special tools (e.g., simulation, data
reduction, or utility tools) that are not deliverables, but are planned for
use during software development.

 Test tools. Describe any special test systems, test data, data reduction
tools, test computer software, or calibration and diagnostic software that
are not deliverables, but are planned for use during software
development.

November 2001 Page 6-24 Functional Design Phase

Section 6: Functional Design Phase

Conduct Functional Design Review

Review Items
Continued:

 Commercial resources. Describe commercially available computer
resources, including any optional capabilities (e.g., special features,
interface units, special instructions, controls, formats). Identify any
limitations of commercially available equipment (e.g., failure to meet
customer interface, safety, and maintainability requirements) and
identify any deficiencies.

 Existing documentation. Maintain a file and have available for review

any existing documentation supporting the use of commercially
available computer resources.

 Support resources. Describe the resources necessary to support the

software product during engineering, installation, and operational state
(e.g., operational and support hardware and software personnel, special
skills, human factors, configuration management, testing support,
documentation, and facilities/space management).

 Standards. Describe any standards or guidelines that must be followed.

 Operation and support documentation. Describe the documentation

that will be developed to support the operation and maintenance of the
software product.

Deliverables:

Review Process:

Create and distribute official meeting minutes for each session. The minutes
should consist of significant questions and answers, action items and
individual/group responsible, deviations, conclusions, and recommended
courses of action resulting from presentations or discussions.
Recommendations that are not accepted should be recorded along with the
reason for non-acceptance. Minutes must be distributed to the system owner
and customers for review and notification of review performance as follows:

 Approval - indicates that the functional design is satisfactorily

completed.

 Contingent Approval - indicates that the functional design is not

considered accomplished until the satisfactory completion of resultant
action items.

 Disapproval - indicates that the functional design is inadequate.

Another Functional Design Review is required.

Not applicable.

November 2001 Page 6-25 Functional Design Phase

Section 6: Functional Design Phase

Initiate Procurement of Hardware/Software

Responsibility:

Description:

Project Manager/Team

Careful consideration should be given to purchasing off-the-shelf software
before expending the time, resources, and costs associated with developing
custom-built systems. Whenever possible, acquire off-the-shelf software to
satisfy some or all of the project requirements. In addition, some projects
may require the acquisition of hardware or software to support the design,
code, and test processes, (see Appendix I- COTS.)

Try to acquire a demonstration package of any proprietary software before
completing the design specifications. The proprietary software may prove
inadequate or inappropriate once it has been evaluated through hands-on use.
Create a pilot of the software product to exercise the most important
functions provided by the proprietary software as well as to obtain definite
performance indications.

Initiate the procurement of any hardware or software well in advance of the
planned need for these products. Adequate time must be allocated in the
Project Plan timeline for the selection, procurement, installation, testing, and
training associated with each vendor product.

The project team may assume all of the procurement, installation, and testing
responsibilities, or the functional area that is most familiar with the product
may initiate the acquisition and testing of some hardware and software. For
example, a local area network engineering group may procure and test local
area network or client/server software; a mainframe systems group may
procure and test mainframe software.

Deliverables:

Review Process:

Note: When the expected operating platform for a software product will
require extensive procurement of hardware and software, it is recommended
that procurement needs be addressed as early in the lifecycle as possible. If
hardware and software acquisition requirements are known, develop the
Acquisition and Installation Plans for all operating sites and initiate the
procurement process. Review and, if necessary, revise the Production
Platform Acquisition and Installation Plans at the beginning of the
Programming Phase. Requirements for the Production Platform Acquisition
and Installation Plans are provided in Section 8, Programming Phase.

Place a copy of all software and hardware procurement records (e.g.,
justifications, approvals, purchase orders, and invoices) and the Acquisition
and Installation Plans (if developed) in the Project Notebook.

Not required; however, a peer review of software and hardware procurement
records can be beneficial to ensure the correct order is placed.

November 2001 Page 6-26 Functional Design Phase

Section 6: Functional Design Phase

Revise Project Plan

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once the Functional Design Review is completed and the functional design
is baselined, determine if the project estimates for resources, cost, and
schedule need to be revised and if the selected design approach is still
appropriate for the size and complexity of the project.

Review the Project Plan for accuracy and completeness of all Functional
Design Phase activities and make any changes needed to update the
information. Expand the information for the System Design Phase to reflect
accurate estimates of resources, costs, and hours.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to assure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the System Design Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

November 2001 Page 6-27 Functional Design Phase

Section 6: Functional Design Phase

Conduct Functional Design Phase Exit

Conduct Structured Walkthroughs

Responsibility:

Description:

 SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the Functional Design Phase, schedule at least one structured
walkthrough to review each of the Functional Design Phase deliverables, i.e.,
Logical Model, Data Dictionary, Requirements Traceability Matrix, and
Functional Design Document.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample report form that can be used for phase exits.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the Functional Design Phase Exit process.
Additional IPAs can be performed during the phase, as appropriate. The
completion of the Functional Design Document is an appropriate time to
schedule an IPA.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct Functional Design Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

Schedule the Phase Exit as the last activity of the Functional Design Phase. It
is the responsibility of the project manager to notify the appropriate
participants when a project is ready for the Phase Exit process and to
schedule the Phase Exit meeting. All functional areas and the Quality
Assurance representative involved with the project should receive copies of
the deliverables produced in this phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 6-28 Functional Design Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 7

SYSTEM DESIGN PHASE

Section 7: System Design Phase

Table of Contents

System Design Phase ... 7-0

Highlights of Phase .. 7-1
Overview ... 7-2
Select System Architecture ... 7-3
 Evaluate System Architecture Alternatives ... 7-4
 Recommend System Architecture .. 7-6
Design Specifications for Software Modules ... 7-7
Design Physical Model and Data Base Structure .. 7-9
Develop Integration Test Plan .. 7-10
Develop System Test Plan ... 7-12
Develop Conversion Plan .. 7-14
Develop System Design .. 7-16
 Develop System Design Document ... 7-17
 Conduct Critical Design Review ... 7-18
Develop Program Specifications ... 7-20
Define Programming Standards ... 7-22
Revise Project Plan .. 7-24
Conduct Project Reviews .. 7-25

November 2001 Page 7-i System Design Phase

Section 7: System Design Phase

Highlights of Phase

Forms Utilized

Conversion Plan
System Design Document

Methods and Tools

Define procedures and man-machine boundaries:

Manual and automated processing
Security and quality issues
Input and output functions

Tools:

project management tools
programming code and hardware
prototyping tools
CASE (computer aided software engineering)

Evaluate design

Walkthrough procedures being developed
Use feedback from users where possible

Present design documentation

Executive summary of system
Description and explanation of design decisions
Detailed documentation required for programmers,
storage requirements etc
Control descriptions

Key Activities:

Select System Architecture
Design Specifications for Software Modules
Design Physical Model and Data Base Structure
Develop Integration Test Plan
Develop System Test Plan
Develop Conversion Plan
Develop System Design
Develop Program Specifications
Define Programming Standards
Revise Project Plan
Conduct Structured Walkthrough(s)
Conduct In-Phase Assessment
Conduct System Design Phase Exit

Outputs:

 Design specifications
 Physical Model
 Data Dictionary (expanded)
 Integration Test Plan (draft)
 System Test Plan (draft)
 Conversion Plan
 Requirements Traceability Matrix (expanded)
 System Design Document
 Program Specifications
 Programming Standards
 Project Plan (revised)

Inputs:

 Project Notebook
 Design records
 Logical model
 Data dictionary (expanded)
 Requirements Traceability Matrix (expanded)
 Functional Design Document
 Hardware and software procurement records
 Project Plan (revised)
 Software Quality Assurance Plan

Systems Design Phase Highlights

November 2001 Page 7-1 System Design Phase

Section 7: System Design Phase

Overview

Description:

1) Translate customer-oriented

functional design
specifications;

2) Design the data structure and
processes;

3) Develop general module
specifications;

4) Develop system design

Review Process:

SDLC References:

The goal of this phase is to translate the customer-oriented functional design
specifications into a set of technical, computer-oriented system design
specifications; and to design the data structure and processes to the level of
detail necessary to plan and execute the Programming and Installation
Phases. General module specifications should be developed to define what
each module is to do, but not how the module is to be coded. Effort focuses
on specifying individual routines and data structures while holding constant
the software structure and interfaces developed in the previous phase. Each
module and data structure is considered individually during detailed design
with emphasis placed on the description of internal and procedural details.
The primary deliverable of this phase is a software system design that
provides a blueprint for the coding of individual modules and programs.

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Section 2 Lifecycle Model. In addition, a
Critical Design Review is conducted once the System Design Document is
developed. This review is an important milestone in the design process. The
time and resources needed to conduct the walkthroughs and Critical Design
Review should be indicated in the project resources, schedule, and work
breakdown structure. Section 2 Lifecycle Model, Quality Reviews, provides
an overview of the Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 7-2 System Design Phase

Section 7: System Design Phase

Select System Architecture

Responsibility:

Description:

1) Evaluate system architecture

alternatives;
2) Select specific hardware,

software, database management
system and communications
facilities;

3) Obtain support from functional
area points-of-contact

Deliverables:

Review Process:

Tasks:

Project Team

When the system architecture for the software product has not been
predetermined by the existing computing environment of the system owner
and customers, evaluate system architecture alternatives to determine which
one has the best, cost-effective solution that satisfies the project
requirements.

"Cost effective solution" does not imply the least expensive alternative. The
"best, cost effective solution" is the alternative that does the best job of
satisfying the project requirements, assures the highest quality software
product, and provides for an adequate return on investment in a timeframe
that is acceptable to the system owner:

Select the specific hardware, software, data base management system, and
communication facilities based on the following types of considerations:

 Agency or site-specific information architecture guidelines or standards
 Hardware and software that emphasizes simplicity, flexibility, ease of

operation and maintenance
 Cost to procure and maintain potential environment
 Backup and recovery procedures
 Selection of a distributed or centralized processing environment
 Communication requirements
 Data configuration

Obtain support from functional area points-of-contact to aid in the
architecture evaluation process. Consultations and input may be helpful from
system and data base administrators, local area network administrators,
operations personnel, system programmers, and communication experts.

Refer to each task for applicable deliverables.

Refer to each task for applicable review processes.

The following tasks are involved in selecting a system architecture:

Evaluate System Architecture Alternatives
Recommend System Architecture

November 2001 Page 7-3 System Design Phase

Section 7: System Design Phase

Evaluate System Architecture Alternatives

November 2001 Page 7-4 System Design Phase

Description:

Consider system architecture alternatives within the site's information
architecture guidelines that enable the project objectives and requirements to
be achieved. The selection of system architecture depends on many factors
such as the experience of the project team with each alternative and the
availability of reusable components to facilitate the implementation of an
alternative.

When investigating alternatives, consider the following issues:

 Those functions or portions of functions that are to be automated and the

functions that will be manual. Conduct an examination of what the
automated portion of the project will encompass.

 The technical solution for the objectives. The determinations of how the

software product is to be designed; (e.g., online vs. batch, client-server
vs. mainframe, Oracle vs. SQL Server).

 The system owner and customers' computing environment and the needs

created by the technical solution. Consider any hardware and software
that must be acquired, including system access software, operating
system software, data base management system, and communications
facilities.

The following procedure provides one approach for evaluating the
architecture Alternatives:

 Conduct an Analysis of Benefits and Costs to determine the most cost-

effective alternative. On the benefits side, include the improvements
over the current process being used to support the business application.
On the cost side, include any degradation from current capabilities along
with the rationale for allowing the degradation.

 Create and evaluate a data flow diagram for each alternative.

 Identify how customers would interact with the features associated with

each alternative (such as the generation of queries and reports).

 Create a list of the risks associated with each alternative and develop a

plan for mitigating each risk.

 Compare the performance capabilities of each alternative. How fast will

each alternative be able to process the customer's work given a
particular hardware resource. Performance is usually expressed in terms
of throughput, run time, or response time. Five factors that frequently
affect performance include:

- Number of intermediate files in a system (park data

 between programs)
- Number of times a given file is passed
- Number of seeks against a disk file
- Time spent in calling programs and other system

 overhead
- Time taken to execute actual program

Section 7: System Design Phase

Evaluate System Architecture Alternatives

Description
Continued:

Deliverables:

Review Process:

PMM Reference:

 Compare the security and access control features of each alternative. To
what extent does the alternative provide security against human errors,
machine malfunction, or deliberate mischief. Some common controls
include:

- Check digits on predetermined numbers
- Batch control totals
- Creation of journals and audit trails
- Limited access to files

 Compare the ease with which each alternative allows the system to be

modified to meet changing requirements, such as:
- Fixing errors
- Changing customer needs
- Mandatory/statutory modifications
- Enhancements

Maintain records on each alternative that is evaluated. Use this information
to develop a summary of the system architecture alternatives. The summary
will be integrated into the materials presented to the system owner when a
system architecture recommendation is made. Place a copy of the records for
each alternative and the summary in the Project Notebook.

If a Cost Benefit Analysis (CBA) is conducted, prepare a report that
describes the process used for the analysis, a summary of the alternatives
considered, and the results obtained and place a copy in the Project
Notebook. The report will be integrated into the materials presented to the
system owner when a system architecture recommendation is made.

Conduct structured walkthroughs on records of each alternative that is
evaluated.

For more information on conducting the Cost Benefit Analysis, refer to,
Conduct Cost Benefit Analysis in Section 3, Project Phase of the Project
Management Methodology on Web site at: http://www.michigan.gov/dit.

November 2001 Page 7-5 System Design Phase

Section 7: System Design Phase

Recommend System Architecture

Description:

1) Develop recommendation for

system architecture

Deliverables:

Review Process:

Based on the results of the architecture alternatives evaluation, develop a
recommendation for a system architecture that is cost-effective and will
facilitate the achievement of the software project requirements. Prepare a
presentation for the system owner and customers that provides the following
types of information to support the recommendation:

 Review the limitations or problems with any current manual or

automated system that will be resolved by the software product.

 Present the logical model for the software product. Highlight new

functions that would be incorporated.

 For each architecture alternative that was evaluated, present the

following information:

- A description of the alternative.
- An overall data flow diagram showing how the alternative

would be implemented.
- The way the system would look to the customers, in terms of

hardware, customer interface, reports, and query facilities.
- The estimated benefits of the alternative.
- The estimated cost and time to implement the alternative.
- A statement of the element of risk associated with the alternative.

 Present the recommended alternative and explain why it was selected.

Before the project proceeds, the system owner should make a decision about
the system architecture either by formally accepting the project team's
recommendation or by directing the team to use a different architecture. Any
delay in making this decision could result in a slippage of the project
schedule.

Document the project team’s recommendations for the most cost-effective
and viable architecture alternative. Provide a summary of each alternative
that was evaluated. Describe the rationale for proposing the recommended
architecture. Describe the impact of this alternative on the system owner and
customer’s organization(s) and other systems. Include any background
information that was relevant to the decision process, such as the Cost
Benefit Analysis Report.

Present the project team's recommendation for the system architecture to the
system owner and customers. The recommendation can be delivered as a
document or as a presentation. Place a copy of the document or presentation
materials in the Project Notebook.

Conduct a structured walkthrough to assure that the most cost-effective and
viable architecture alternative is being recommended.

November 2001 Page 7-6 System Design Phase

Section 7: System Design Phase

Design Specifications for Software

November 2001 Page 7-7 System Design Phase

Responsibility:

Description:

1) Collect design entities;
2) Group design entities;
3) Detail the design

Steps:

Project Team

During the Functional Design Phase, a decomposition of the software
product requirements resulted in a collection of design entities (or objects).
In the System Design Phase, these design entities are grouped into the
routines, modules, and programs that need to be developed or acquired as
off-the-shelf or reusable software.

Expand the functional design to account for each major software action that
must be performed and each data object to be managed. Detail the design to
a level such that each program represents a function that a programmer will
be able to code.

Use the following steps to design the software module specifications:

 Identify a software program for each action needed to meet each

function or data requirement in the Software Requirements Specification
and the data dictionary.

 Identify any routines and programs that may be available as reusable

code or objects from existing applications or off-the-shelf software.
Identify programs that must be designed and developed (custom-built).
Assign a name to each program and object that is functionally
meaningful.

 Identify the system features that will be supported by each program.

 Specify each program interface. Update the data dictionary to reflect all

program and object interfaces changed while evolving from the
functional to the system design.

 Define and design significant characteristics of the programs to be

custom-built.

 Expand the program interfaces to include control items needed for

design validity (e.g., error and status indicators).

 Combine similar programs and objects. Group the design entities into

modules based on closely knit functional relationships. Formulate
identification labels for these modules.

 Show dependencies between programs and physical data structures (e.g.,

files and global tables). Avoid defining a program that not only needs
data residing in a file or global table, but also depends on the physical
structure or location of data.

 Change the design to eliminate features that reduce maintainability and

reusability (i.e., minimize coupling between programs and maximize the
cohesion of programs).

Section 7: System Design Phase

Design Specifications for Software

Deliverables:

Review Process:

Document the system design primarily in the form of diagrams. Supplement
each diagram with text that summarizes the function (or data) and highlights
important performance and design issues.

When using structured design methods, the design diagrams should:

 Depict the software as a top-down set of diagrams showing the control

hierarchy of all software programs to be implemented.
 Define the function of each software program.
 Identify data and control interfaces between programs.
 Specify files, records, and global data accessed by each program.

Conduct structured walkthroughs to assure that the custom-built routines and
programs are correctly designed.

November 2001 Page 7-8 System Design Phase

Section 7: System Design Phase

Design Physical Model and Database Structure

Responsibility:

Description:

1) Define dynamics, data

transformation, and data
storage requirements;

2) Map the logical model to
specific technical reality

Deliverables:

Review Process:

Project Team

The physical model is a description of the dynamics, data transformation,
and data storage requirements of the software product. The physical model
maps the logical model created during the Functional Design Phase to a
specific technical reality. Care must be taken to retain in the physical
implementation all of the capabilities inherent in the logical model.

The physical model frequently differs from the logical model in the
following areas:

 Constraints imposed by the data base management system - The logical

data model may have different implementations in the selected data base
management system.

 Performance - Data redundancies, indices, and data structure changes

may have to be introduced into the physical model to improve
performance.

 Distributed processing - Possible network and multiple production

hardware configurations may cause changes to the physical data model.

Designing the data base structure converts the data requirements into a
description of the master and transient files needed to implement the
requirements. If the software product will include a data base, design the
data base in conjunction with the following data base management features:

 Report writer and file processing capabilities
 Online query processing to retrieve data
 Automated data dictionary systems

Document the physical model for incorporation into the System Design
Document. Review the contents of the data dictionary entries and update to
complete information on data elements, entities, files, physical
characteristics, and data conversion requirements. Place a copy of all
physical model and data base structure records in the Project Notebook.

Schedule structured walkthroughs to verify that the physical model and data
dictionary are correct and complete.

November 2001 Page 7-9 System Design Phase

Section 7: System Design Phase

Develop Integration Test Plan

November 2001 Page 7-10 System Design Phase

Responsibility:

Description:

1) Verify the integrity of a module;
2) Develop integration test plan;
3) Address integration levels

Deliverables:

Project Team Programmers

The purpose of integration testing is to verify the integrity of a module (a
cohesive set of programs) and its interfaces with other modules within the
software structure. An integration test plan is developed to incorporate
successfully unit-tested modules into the overall software structure and to
test each level of integration to isolate errors introduced by newly
incorporated modules.

The number of integration levels, the classes of tests to be performed, and
the order in which routines and builds are incorporated into the overall
software structure are addressed in the Integration Test Plan. The following
factors should be considered:

 Are routines to be integrated in a pure top-down manner or should

builds be developed to test sub-functions first?

 In what order should major software functions be incorporated?

 Is the scheduling of module coding and testing consistent with the order

of integration?

 Is special hardware required to test certain routines?

Integration testing should include tests that validate the following functions:

 Verify each interface between the module and all other modules.
 Access each input message or command processed by the module.
 Check each external file or data record referenced by coding statements

in the module.
 Output each message, display, or record generated by the module.

An important consideration during integration test planning is the amount of
test software (e.g., drivers, test case generation) that must be developed to
adequately test the required functionality. For example, it may be cost-
effective to delay testing of a communication function until hardware is
available rather than generate test software to simulate communication links.

Similarly, it may be better to include certain completed modules in the
software structure in order to avoid having to develop software drivers.
These decisions are made on the basis of cost and risks.

Develop the draft Integration Test Plan that addresses the following
activities:

 Define the integration tests at each element level, stating objectives,

what is to be tested, and verified. Testing is from the point of view of
structure and function.

 Define all aspects of the formal interfaces that must undergo formal

Integration testing. Review interface requirements to ensure
completeness, consistency, and effectiveness.

Section 7: System Design Phase

Develop Integration Test Plan

Deliverables
Continued:

Review Process:

 Plan for test tools and software that must be developed to adequately test
the required functionality.

Note: The Integration Test Plan may be incorporated in the Project Test
Plan.

Conduct a peer review or structured walkthrough to assure that the draft
Integration Test Plan is accurate and complete. The Integration Test Plan
will be reviewed and revised as needed during the Programming Phase.

November 2001 Page 7-11 System Design Phase

Section 7: System Design Phase

Develop System Test

November 2001 Page 7-12 System Design Phase

Responsibility:

Description:

Project Test Team

The objectives of the system test process are to assure that the software
product adequately satisfies the project requirements; functions in the
computer operating environment; successfully interfaces between
procedures, operating procedures, and other systems; and protects the
software and data from security risks. The system should be tested under the
same kind of daily conditions that will be encountered during regular
operations. System timing, memory, performance, and security functions are
tested to verify that they perform as specified. The functional accuracy of
logic and numerical calculations are tested for verification under normal and
load conditions.

Test data should be varied and extensive enough to enable the verification of
the operational requirements. Expected output results should be included in
the test plan in the form of calculated results, screen formats, hardcopy
output, pre-determined procedural results, warnings, error messages and
recovery.

Detailed planning for the system testing helps to ensure that system
acceptance will be successfully completed on schedule. When applicable,
system testing must include the following types of tests:

 Performance tests that measure throughput, accuracy, responsiveness,

and utilization under normal conditions and at the specified maximum
workload.

 Stress tests to determine the loads that result in appropriate, non-

recoverable, or awkward system behavior.

 Interface tests to verify that the system generates external outputs and

responds to external inputs as prescribed by approved interface control
documentation.

 System recovery and reconfiguration tests.

 Verification that the system can be properly used and operated in accord

with its users guide and operating instructions.

 Verification that the system meets its requirements for reliability,

maintainability, and availability, including fault tolerance and error
recovery.

 Verification of the effectiveness of error detection and analysis, and

automated diagnostic tools.

 Demonstration that the system complies with its serviceability

requirements such as accessibility, logistics, upgrades, diagnostics, and
repair capabilities.

Section 7: System Design Phase

Develop System Test

Deliverables:

Review Process:

Develop a draft System Test Plan that describes the testing effort, provides
the testing schedule, and defines the complete range of test cases that will be
used to assure the reliability of the software. The test cases must be complete
and the expected output known before testing is started. The test plan should
address the following:

 Provide a definition of and the objectives for, each test case.

 Define the test scenario(s) including the step-by-step procedure, the

number of processing cycles to be tested or simulated, and the method
and responsibility for feeding test data to the system.

 Define the test environment including the hardware and software

environment under which the testing will be conducted. Identify and
describe manual procedures, automated procedures, and test sites (real
or simulated).

 Identify test tools and special test support needs (e.g., hardware and

software to simulate operational conditions or test data that are
recordings of live data).

 Identify responsibilities for conducting tests; for reviewing, reporting,

and approving the results; and for correcting error conditions.
 Develop a requirements verification matrix mapping individual tests to

specific requirements and specifying how each system requirement will
be validated.

 Schedule for integrating and testing all components including adequate

time for retesting.

Note: The System Test Plan may be incorporated into the Project Test Plan.

Conduct peer reviews or structured walkthroughs to assure that each system
test procedure is accurate, complete, and accomplishes the stated objectives.
The System Test Plan will be reviewed and revised as needed during the
Programming Phase.

November 2001 Page 7-13 System Design Phase

Section 7: System Design Phase

Develop Conversion Plan

November 2001 Page 7-14 System Design Phase

Responsibility:

Description:

Deliverables:

Project Team

If the software product will replace an existing automated system, develop a
Conversion Plan. The major elements of the Conversion Plan are to develop
conversion procedures, outline the installation of new and converted
files/data bases, coordinate the development of file-conversion
programming, and plan the implementation of the conversion procedures.

File conversion should include a confirmation of file integrity. Determine
what the output in the new system should be compared with the current
system, and ensure that the files are synchronized. The objective of file
conversion is new files that are complete, accurate and ready to use.

Many factors influence data conversion, such as the design of the current and
new systems and the processes for data input, storage, and output.
Understanding the data's function in the old system and determining if the
function will be the same or different in the new system is of major
importance to the Conversion Plan. The structure of the data to be converted
can limit the development of the system and affect the choice of software.

Develop a Conversion Plan that identifies what conversions are needed and
how the conversion(s) will be implemented. Consider the following factors
during the development of the Conversion Plan:

 Determine if any portion of the conversion process should be performed

manually.

 Determine whether parallel runs of the old and new systems will be

necessary during the conversion process.

 Understand the function of the data in the old system and determine if

the use will be the same or different in the new system is important.

 The order that data is processed in the two systems influences the

conversion process.
 Volume considerations, such as the size of the database and the amount

of data to be converted, influence how the data will be converted.
Especially important are the number of reads that are necessary, and the
time these conversions will take.

 Customer work and delivery schedules, timeframes for reports and end-

of-year procedures, and the criticality of the data help determine when
data conversion should be scheduled.

 Determine whether data availability and use should be limited during the

conversion.

 Plan for the disposition of obsolete or unused data that is not converted.

 Develop a rollback plan/fallback position in case of failure.

Section 7: System Design Phase

Develop Conversion Plan

Review Process:

Resource:

Conduct structured walkthroughs to assure that the Conversion Plan is
accurate and complete.

A Conversion Plan template is available on the Research and Policy Web
site at: http://www.michigan.gov/dit.

November 2001 Page 7-15 System Design Phase

http://www.michigan.gov/dit

Section 7: System Design Phase

Develop System Design

Responsibility:

Description:

1) Translate requirements into

precise descriptions of the
software components;

2) Obtain approval of system
design

Deliverables:

Review Process:

Tasks:

Project Team

The system design is the main technical deliverable of the System Design
Phase. The system design translates requirements into precise descriptions of
the software components, interfaces, and data necessary before coding and
testing can begin. It is a blueprint for the Programming Phase, based on the
software structure and data model established in the Functional Design
Phase.

The system design plays a pivotal role in the development and maintenance
of a software product. The design provides valuable information used by the
project manager, quality assurance staff, configuration management staff,
software designers, programmers, testers, and maintenance personnel.

The system design is baselined after the system owner's formal approval of
the design as described in the System Design Document. Once the system
design is baselined, any changes to the design must be managed under
change control procedures established in the Software Configuration
Management Plan. Approved changes must be incorporated into the System
Design Document.

It is important for the system owner/customers to understand that some
changes to the baselined system design may affect the project scope and
therefore can change the project cost, resources, or schedule. It is the
responsibility of the project manager and team to identify system
owner/customer requested changes that would result in a change of project
scope; evaluate the potential impact to the project costs, resources, or
schedule; and notify the system owner of the project planning revisions that
will be required to accommodate their change requests.

Each requirement identified in the Software Requirements Specification
must be traceable to one or more design entities. This traceability ensures
that the software product will satisfy all of the requirements and will not
include inappropriate or extraneous functionality. Expand the Requirements
Traceability Matrix developed in the Requirements Definition Phase to relate
the system design to the requirements. Place a copy of the expanded matrix
in the Project Notebook. Refer to each task for other applicable deliverables.

Conduct a structured walkthrough of the Requirements Traceability Matrix.
Refer to task Section 7, Conduct Critical Design Review, for the system
design review process.

The following tasks are involved in developing the system design:

Develop System Design Document
Conduct Critical Design Review

November 2001 Page 7-16 System Design Phase

Section 7: System Design Phase

Develop System Design Document

Description:

Deliverables:

Review Process:

SDLC Reference:

Resource:

The System Design Document records the results of the system design
process and describes how the software product will be structured to satisfy
the requirements identified in the Software Requirements Specification. The
System Design Document is a translation of the requirements into a
description of the software structure, software components, interfaces, and
data necessary to support the programming process.

Prepare the System Design Document and submit it to the system owner and
customers for their review and approval. The approved System Design
Document is the official agreement and authorization to use the design to
build the software product. Approval implies that the design is understood,
complete, accurate, and ready to be used as the basis for the subsequent
lifecycle phases. In other words, once approved this becomes the design
baseline. Subsequent changes or additions to the software design that receive
stakeholder concurrence supersede the existing baseline and establish a new
design baseline. Place a copy of the approved System Design Document in
the Project Notebook.

Conduct structured walkthroughs as needed to ensure that the System Design
Document is accurate and complete. The completion of the System Design
Document is an appropriate time to schedule an In-Phase Assessment (IPA).

Appendix D, In-Phase Assessment Process Guide provides a description and
instructions for conducting an IPA.

A System Design Document template is available on the Research and
Policy Web site at: http://www.michigan.gov/dit.

November 2001 Page 7-17 System Design Phase

http://www.michigan.gov/dit

Section 7: System Design Phase

Conduct Critical Design Review

November 2001 Page 7-18 System Design Phase

Description:

The Critical Design Review is a formal technical review of the system
design. The purpose of the review is to demonstrate to the system owner and
customers that the system design can be implemented on the selected
platform and accounts for all software and data requirements and
accommodates all design constraints (e.g., performance, interface, security,
safety, resource, and reliability requirements). The design review should
include a review of the validity of algorithms needed to perform critical
functions.

Several short Critical Design Reviews can replace one long review if the
software consists of several components that are not highly interdependent.
The review process should be a series of presentations by the project team to
the system owner and other approval authorities.

Conduct a Critical Design Review that demonstrates that the design
specifications are capable of supporting the full functionality of the software
product, as follows:

 All algorithms will perform the required functions.

 The specification is complete, unambiguous and well documented,

including timing and sizing, and data and storage allocations.

 The specification is necessary and sufficient for, and directly traceable

to, the software system design.

 The specification is compatible with every other specification, piece of

equipment, facility, and item of system architecture, especially as
regards information flow, control, and sequencing.

 The specification is consistent with the abilities of current development

and customer personnel.

In addition to verifying individual specifications, the Critical Design Review
assesses other project deliverables to ensure the following:

 The team is following the approved design approach.

 Measures to reduce risk on a technical, cost, and schedule basis are

adequate.

 The performance characteristics of the design solution are acceptable.

 Testing will be sufficient to ensure software product correctness.

 The resultant application will be maintainable.

 Provisions for automatic, semi-automatic, and manual recovery from

hardware/software failures and malfunctions are adequate and
documented.

Section 7: System Design Phase

Conduct Critical Design Review

Description
Continued:

Deliverables:

Review Process:

 Diagnostic programs, support equipment, and commercial manuals all
comply with the system maintenance concept and specification
requirements.

Create and distribute official meeting minutes for each design review
session. The minutes should consist of significant questions and answers,
action items and individual/group responsible, deviations, conclusions, and
recommended courses of action resulting from presentations or discussions.
Recommendations that are not accepted should be recorded along with the
reason for non-acceptance. Minutes must be distributed to review
participants. The system owner determines review performance as follows:

 Approval - The review was satisfactorily completed.

 Contingent Approval - The review is not finished until the satisfactory

completion of resultant action items.

 Disapproval - The specification is inadequate. Another Critical Design

Review will be required.

Not applicable.

November 2001 Page 7-19 System Design Phase

Section 7: System Design Phase

Develop Program Specifications

Responsibility:

Description:

Deliverables:

Review Process:

Project Team

A Program Specification is a written procedural description of each software
system routine. The Program Specification should provide precise
information needed by the programmers to develop the code.

Many techniques are available for specifying the system design, such as
formal specification languages, program design languages (e.g., pseudo-code
or structured English), meta-code, tabular tools (e.g., decision tables), and
graphical methods (e.g., flow charts or box diagrams). In object-oriented
design, the specification of requirements and preliminary design constraints
and dependencies often results in the design language producing the detailed
specifications.

Select the technique or combination of techniques that is best suited to the
software project and to the experience and needs of the programmers who
will use the system design as their blueprint. The following are suggestions
for using the techniques:

 Decision trees are useful for logic verification or moderately complex

decisions that result in up to 10-15 actions. Decision trees are also useful
for presenting the logic of a decision table to customers.

 Decision tables are best used for problems involving complex

combinations of up to 5-6 conditions. Decision tables can handle any
number of actions; however, large numbers of combinations of
conditions can make decision tables unwieldy.

 Structured English is best used wherever the problem involves

combining sequences of actions with decisions or loops. Once the main
work of physical design has been done and physical files have been
defined, it becomes extremely convenient to be able to specify physical
program logic using the conventions of structured English, but without
getting into the detailed syntax of any particular programming language
(pseudo-code).

 Standard English is best used for presenting moderately complex logic

once the analyst is sure that no ambiguities can arise.

Specifications may be developed as documents, graphic representations,
formal design languages, records in a data base management system, and
CASE tool dictionaries. A list of program characteristics typically included
in a Program Specification is provided at the end of this section.

Conduct a series of structured walkthroughs to ensure that the Program
Specification is accurate and complete.

November 2001 Page 7-20 System Design Phase

Section 7: System Design Phase

Develop Program Specifications

Sample Characteristics:

For each program to be custom-built, define the program's functional and
technical characteristics, as they become known. The following is a list of
program characteristics:

 Program identification
 Program name
 Program generic type
 Functional narrative
 Program hierarchical features diagram
 Development dependencies and schedule
 Operating environment

- equipment
- programming language and version
- preprocessor
- operating system
- storage restrictions
- security

 Frequency of run
 Data volumes
 Program termination messages

- normal termination
- abnormal termination

 Console/printer messages
 Recovery/restart procedures
 Software objectives
 Program input/output diagram
 Data bank information
 Called and calling programs/modules
 Program logic diagrams
 Significant "how-to" instructions
 Telecommunications information

November 2001 Page 7-21 System Design Phase

Section 7: System Design Phase

Define Programming Standards

Responsibility:

Description:

Project Team Programmers

Programming standards are necessary to ensure that custom-built software
has acceptable design and structural properties. Programming standards must
be practical, easy to implement, and accepted by the project team. The
project team programmers should be the primary developers of the standard.
Use a structured approach to programming to allow for easy modification
and to facilitate testing and debugging.

The following guidelines are generally applicable to any programming
language. Use these guidelines as the basis for the programming standard
and add project-specific standards relating to the programming language and
tools:

 Control Flow Constructs

- sequence
- if-then-else
- case statement
- do-while (pretest loop)
- do-until (post-test loop)

 Module Size
- Number of executable lines of source code should average 100 lines

per unit.
- Units should contain no more than 200 lines of executable source

code.
 Module Design

- Units do not share temporary storage locations for variables
- Units perform a single function
- Avoid self-modifying code
- Each unit is uniquely named
- Each unit has a standard format:

• prologue
• variable declarations
• executable statements/comments

- Use single entry/exit points except for error paths
- Set comments off from the source code in a uniform manner

 Symbolic Parameters

- Use instead of specific numerics
- Use for constants, size of data structures, relative position in list

 Naming Conventions
- Use uniform naming throughout each unit and module to be put

under configuration control
- Use meaningful variable names
- Do not use keywords as identifiers

 Mixed Mode Operations

- Avoid mixed mode expressions
- Add comments in code whenever used

November 2001 Page 7-22 System Design Phase

Section 7: System Design Phase

Define Programming Standards

Description
Continued:

Deliverables:

Review Process:

 Error and Diagnostic Messages
- Design messages to be self-explanatory and uniform
- Do not require customer to perform table lookups

 Style

- Use conventions such as indentation, white space, and blank lines to
enhance readability

- Align compound statements
- Avoid "go to" statements.
- Avoid compound, negative Boolean expressions
- Avoid nesting constructs beyond five levels deep
- Avoid deeply nested "if" statements.
- Use parentheses to avoid ambiguity
- Include only one executable statement per line
- Avoid slick programming tricks that may create or encourage

defects or be difficult to maintain; the most direct solution is best.

Create a programming standards document and distribute the document to all
project team members. An existing programming standard can be used if it is
applicable to the programming language and tools being used for the project.

Conduct a peer review to assure that the programming standards are
complete and appropriate for the project's programming language and tools.

November 2001 Page 7-23 System Design Phase

Section 7: System Design Phase

Revise Project Plan

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once the Critical Design Review is completed, the system design is
baselined, and the deliverables from the Functional Design Phase have been
updated as needed to reflect changes caused by the system design, determine
if the project estimates for resources, cost, and schedule need to be revised.

Review the Project Plan for accuracy and completeness of all System Design
Phase activities and make any changes needed to update the information.
Expand the information for the Programming Phase to reflect accurate
estimates of resources, costs, and hours. Place a copy of the revised Project
Plan in the Project Notebook.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to ensure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the Programming Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

November 2001 Page 7-24 System Design Phase

Section 7: System Design Phase

Conduct System Design Exit

Conduct Structured Walkthroughs

Responsibility:

Description:

SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the System Design Phase, schedule at least one structured
walkthrough to review each of the System Design Phase deliverables, i.e.,
Physical Model, draft of the Integration Test Plan, draft of the System Test
Plan, Conversion Plan, System Design Document, Program Specifications,
and Programming Standards.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the System Design Phase Exit process.
Additional IPAs can be performed during the phase, as appropriate. The
completion of System Design Document is an appropriate time to schedule
an IPA.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct System Design Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

Schedule the Phase Exit as the last activity of the System Design Phase. It is
the responsibility of the project manager to notify the appropriate
participants when a project is ready for the Phase Exit process and to
schedule the Phase Exit meeting. All functional areas and the Quality
Assurance representative involved with the project should receive copies of
the deliverables produced in this phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 7-25 System Design Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 8

PROGRAMMING PHASE

Section 8: Programming Phase

Table of Contents

Programming Phase .. 8-0

Highlights of Phase .. 8-1
Overview ... 8-2
Develop Production Platform Acquisition Plan ... 8-3
Develop Installation Plan ... 8-4
Establish Programming Environment .. 8-5
Write Programs .. 8-6
Conduct Unit Testing ... 8-8
Establish Development Baselines .. 8-9
Plan Transition to Operational Status .. 8-10
Generate Operating Documentation .. 8-12
 Develop Procedures Manual .. 8-14
 Develop Programmers Reference Manual ... 8-16
Develop Training Program .. 8-17
Revise Project Plan .. 8-20
Conduct Project Reviews ... 8-21

November 2001 Page 8-i Programming Phase

Section 8: Programming Phase

Highlights of Phase

Productio
Installatio
Transition
Training P

Methods and Tools
Software:

purchase off the shelf software
develop custom software
decide on platforms (operating systems)
user support issues considered

Hardware:

hardware systems, vendor selection
connectivity allowing for future growth
support offered by vendors

Train users:

consider users and operators
use internal or external training?
Training tools

- manuals
- video, multimedia presentations
- tutorials

Get feedback on system

Testing of system:

ensure quality and reliability
use live sample data if possible

Key Activities:

Develop Production Platform Acquisition Plan
Develop Production Platform Installation Plan
Establish Programming Environment
Write Programs
Conduct Unit Testing
Establish Development Baselines
Plan Transition to Operational Status
Generate Operating Documentation
Develop Training Program
Revise Project Plan
Conduct Structured Walkthrough(s)
Conduct In-Phase Assessment
Conduct Programming Phase Exit

Outputs:

 Production Platform Acquisition Plan
 Installation Plan (draft)
 Software units and modules
 Requirements Traceability Matrix (expanded)
 Integration Test Plan (final)
 System Test Plan (final)
 Project Test File
 Development baselines
 Transition Plan
 Operating Documentation (draft)

- Procedure Manual
- Programmers Reference Manual
- Administrators Manual
- Operations Manual

 Training Plan (draft)
 Project Plan (revised)

Inputs:

 Project Notebook
 Design specifications
 Physical model
 Data Dictionary
 Integration Test Plan (draft)
 System Test Plan (draft)
 Conversion Plan
 Requirements Traceability Matrix (expanded)
 System Design Document
 Program Specifications
 Programming Standards
 Project Plan (revised)
 Software Quality Assurance Plan

Programming Phase

November 20

Forms Utilized

n Platform Acquisition Plan
n Plan
 Plan
lan
 user acceptance and Test procedures

01 Page 8-1 Programming Phase

Section 8: Programming Phase

Overview

Description:

1) Procured hardware and/or

software is installed;
2) Develop plan to acquire and

installation of operating
environment hardware and
software;

3) Develop a training plan;
4) Source code is generated;
5) Database utilities are coded;
6) Object code compiled;
7) Unit testing performed;
8) Operating documentation is

developed

Review Process:

SDLC References:

In this phase any hardware or software procured to support the programming
effort is installed. Plans are developed for the acquisition and installation of
the operating environment hardware and software. A training program is
designed and a Training Plan that describes the program is developed.

The activities in this phase result in the transformation of the system design
into the first complete representation of the software product. The source
code, including suitable comments, is generated using the approved program
specifications. If the software product requires a database, any data base
utilities are coded. The source code is then grouped into processable units
and all high-level language units are compiled into object code. Unit testing
is performed to determine if the code satisfies the program specifications and
is complete, logical, and error free.

The operating documentation is also developed. The operating
documentation is required for installing, operating, and supporting the
software product through its lifecycle.

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Lifecycle Model section. The time and
resources needed to conduct the quality reviews should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model, Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 8-2 Programming Phase

Section 8: Programming Phase

Develop Production Platform Acquisition Plan

Responsibility:

Description:

1) Develop a plan for acquisition

of hardware and software, and
communications equipment;

2) Develop a contingency plan

Deliverables:

Review Process:

Resource:

Project Team

Develop a plan for the acquisition of any hardware, software, and
communications equipment needed to install and operate the software
product at all system owner and customer sites. The plan should address any
special procurements necessary to accommodate the hardware and
communications equipment that may exist at a particular site. Acquisition
planning must include sufficient lead-time to accomplish all procurement,
delivery, testing, and installation processes.

It may be necessary to perform a risk analysis of the impact of certain
resources not being available when needed. Develop a contingency plan for
dealing with
needed resources that are acquired later than expected.

Work closely with the system owner and representatives from the customer
sites to assure that all site-specific hardware, software, and communications
needs are addressed in the Production Platform Acquisition Plan.

Place a copy of the Production Platform Acquisition Plan in the Project
Notebook.

Note: For projects that do not require extensive procurement and installation
of hardware and software, the Production Platform Acquisition and
Installation Plans can be combined into one deliverable.

Conduct a structured walkthrough to assure that the Production Platform
Acquisition Plan is accurate and complete.

A Production Platform Acquisition Plan template is available on the
Research and Policy Web site at: http://www.michigan.gov/dit.

November 2001 Page 8-3 Programming Phase

Section 8: Programming Phase

Develop Installation Plan

Responsibility:

Description:

1) Prepare installation plan

Deliverables:

Review Process:

Resources:

Project Team

The Installation Plan is prepared to specify the requirements and procedures
for the full-scale installation of the developed software product at the system
owner's and all customers' work sites. The plan also addresses the
installation of any hardware, off-the-shelf software, firmware, and
communications equipment needed to operate the product at each site. In
developing an Installation Plan consider each site's requirements for
continuity of operations, level of service, and the needs of the project team,
customers, maintenance personnel, and management.

Work closely with the system owner and representatives from the customer
sites to assure that all site-specific hardware, software, and communications
installation requirements are addressed in the Installation Plan. Develop a
draft Installation Plan that addresses the following issues:

 Schedule of all installation activities.
 Items to be delivered to each installation site.
 Number and qualifications of personnel performing installation.
 Equipment environmental needs and installation instructions.
 Hardware, software, firmware, tools, documentation, and space required

for each installation.
 Special requirements governing the movement of equipment to each

site.
 Communications requirements.
 Dependencies among activities affected by installation.
 Installation tests to assure the integrity and quality of the installed

product.

Place a copy of the draft Installation Plan in the Project Notebook.

Note: For projects with limited procurement and installation requirements,
the Acquisition and Installation Plans can be combined into one deliverable.

Conduct a structured walkthrough to assure that the draft Installation Plan is
accurate and complete. The Installation Plan will be reviewed and revised as
needed during the Software Integration and Testing Phase.

An Installation Plan template is available on the Research and Policy Web
site at: http://www.michigan.gov/dit.

November 2001 Page 8-4 Programming Phase

Section 8: Programming Phase

Establish Programming Environment

Responsibility:

Description:

Establish Programming
Environment:

1) Assemble and install hardware,

software, communications
equipment, databases etc.;

2) Conduct testing to verify that
everything is operating;

3) Activate security procedures

Deliverables:

Review Process:

Project Team

Establishing the programming environment involves assembling and
installing the hardware, software, communications equipment, databases,
and other items required to support the programming effort. When the
installation of the equipment or software is complete, conduct testing to
verify the operating characteristics and functionality of the hardware and
software. If required, security software and procedures should be activated
when the installations are completed.

If the operational environment is also the programming environment, it may
be necessary to alter the operational environment to accommodate an
infrastructure of purchased hardware and software for use during
programming and testing.

Before being integrated into, or used to support, the software product, vendor
products should be tested to verify that the product satisfies the following
objectives:

 The product performs as advertised/specified.
 The product's performance is acceptable and predictable in the target

environment (e.g., testing for LAN certification).
 The product fully or partially satisfies the project requirements.
 The product is compatible with the project team's other hardware and

software tools.

Time should be planned for the project team to become familiar with new
products. Ensure that the project team members who will use the hardware
or software obtain proper training. This may involve attendance at formal
training sessions conducted by the vendor or the services of a consultant to
provide in-house training.

This is a good time to review the programming standards that were
established in the System Design Phase. Make any changes to the standards
that are needed to accommodate the procured hardware and software.

Not applicable

Not applicable

November 2001 Page 8-5 Programming Phase

Section 8: Programming Phase

Write Programs

Responsibility:

Description:

1) Write programs;
2) Generate source and object

code

Coding Practices:

Project Team Programmers

This activity involves generating the source and object code for the software
product. The code should be written in accordance with the programming
standards developed in the System Design Phase. Regardless of the platform,
development of the code should adhere to a consistent set of programming
techniques and error prevention procedures. This will promote reliable,
maintainable code, developed in the most efficient and cost effective
manner.

The source and object code should be uniquely identified and stored in a way
to facilitate the configuration control measures described in the Software
Configuration Management Plan.

Writing programs includes the following tasks:

 Use the Program Specifications developed in the System Design Phase

as the basis for the coding effort.

 Generate source code and machine-readable modules.

 Generate the physical files and data base structure.

 Generate video screens, report generation codes, and plotting

instructions.

 If conversion of an existing system or data is necessary, generate the

program(s) described in the Conversion Plan.

 Conduct preliminary testing of completed units. When the test output is

correct, review the program specification to assure that the unit or
module conforms to the specification.

The following coding practices should be implemented:

 The programming staff should meet at scheduled intervals to discuss

problems encountered and to facilitate program integration and
uniformity.

 Program uniformity should be achieved by using a standardized set of
naming conventions for programs, data elements, variables, and files.

 Modules that can be shared by programs requiring the same

functionality should be implemented to facilitate development and
maintenance.

 Meaningful internal documentation should be included in each program.

 All code should be backed up on a daily basis and stored in an offsite

location to avoid catastrophic loss.

November 2001 Page 8-6 Programming Phase

Section 8: Programming Phase

Write Programs

Coding
Practices
Continued:

Deliverables:

Review Process:

 A standard format for storing and reporting elements representing
numeric data, dates, times, and information shared by programs should
be determined.

 The System Design Document should be updated to reflect any required

deviations from the documented design.

The following deliverables are developed:

 Completed units and modules of code.
 Test materials generated from preliminary testing.

Each requirement identified in the Software Requirements Specification
must be traceable to the code. This traceability ensures that the software
product will satisfy all of the requirements and will not include inappropriate
or extraneous functionality. Expand the Requirements Traceability Matrix
developed in the Requirements Definition Phase to relate the source and
object code to the requirements. Place a copy of the expanded matrix in the
Project Notebook.

Weekly informal reviews of each programmer's work are recommended to
keep the project team informed of progress and to facilitate the resolution of
any problems that may occur. The combined knowledge and skills of the
team members will help to build quality into the software product and
support the early detection of errors in design, logic, or code.

Conduct structured walkthroughs on the expanded Requirements
Traceability Matrix and completed units and modules to assure that the code
is accurate, logical, internally well documented, complete, and error free.
Structured walkthroughs should also be used to validate that the code is
reliable and satisfies the program specifications and project requirements.

For large or complex projects, conduct code inspections at successive phases
of code production. Code inspection is a static analysis technique that relies
on visual examination of code to detect errors, violations of development
standards, and other problems. These inspections are particularly important
when several programmers or different programming teams are developing
code. The inspection team may include experts outside of the project. Ideal
times for code inspections occur when code and unit tests are complete, and
when the first integration tests are complete. Code inspections should be
identified as milestones in the Project Plan.

November 2001 Page 8-7 Programming Phase

Section 8: Programming Phase

Conduct Unit Testing

Responsibility:

Description:

Deliverables:

Review Process:

Project Team Programmers

Unit testing is used to verify the input and output for each module.
Successful testing indicates the validity of the function or sub-function
performed by the module and shows traceability to the design. During unit
testing, each module is tested individually and the module interface is
verified for consistency with the design specification. All-important
processing paths through the module are tested for expected results. All
error-handling paths are also tested.

Unit testing is driven by test cases and test data that are designed to verify
software requirements, and to exercise all program functions, edits, in-bound
and out-of-bound values, and error conditions identified in the program
specifications. If timing is an important characteristic of the module, tests
should be generated that measure time critical paths in average and worst-
case situations.

Plan and document the inputs and expected outputs for all test cases in
advance of the tests. Log all test results. Analyze and correct all errors and
retest the unit using the scenarios defined in the test cases. Repeat testing
until all errors have been corrected.

While unit testing is generally considered the responsibility of the
programmer, the project manager or lead programmer should be aware of the
unit test results.

Completion of unit testing for a software component signifies internal
project delivery of a component or module for integration with other
components. Place all components that have completed unit testing under
configuration control as described in the Software Configuration
Management Plan. These components form the Production Baseline.
Configuration controls restrict changes to tested and approved software in
the Production Baseline. Subsequent changes or additions to the software
that are agreed upon in a Critical Design Review and receive stakeholder
concurrence supersede the existing baseline and establish a new Production
Baseline.

Review the draft versions of the Integration and System Test Plans
developed during the System Design Phase. Update the plans, as needed, to
reflect any changes made to the software design. Deliver the final versions of
the Integration and System Test Plans to the system owner and customer for
review and approval. Place a copy of the approved plans in the Project
Notebook.

Create a Project Test File for all test materials generated throughout the
project lifecycle. Place all unit test materials (e.g., inputs, outputs, results
and error logs) in the Project Test File. The test cases used for unit testing
may become a subset of tests for integration testing.

Conduct peer reviews on the test materials to be placed in the Project Test
File. Conduct structured walkthroughs on any updated plans, e.g., Integration
and System Test Plans.

November 2001 Page 8-8 Programming Phase

Section 8: Programming Phase

Establish Development Baselines

Responsibility:

Description:

Deliverables:

Review Process:

Project Team Programmers

A development baseline is an approved "build" of the software product. A
build can be a single component or a combination of software components.
The first development baseline is established after the first build is
completed, tested, and approved by the project manager or lead programmer.
Subsequent versions of a development baseline should also be approved. The
approved development baseline for one build supersedes that for its
predecessor build.

Conduct internal build tests such as regression, functional, and
performance/reliability. Regression tests are designed to verify that
capabilities in earlier builds continue to work correctly in subsequent builds.
Functional tests focus on verifying that the build meets its functional and
data requirements and correctly generates each expected display and report.
Performance and reliability tests are used to identify the performance and
reliability thresholds of each build.

Once the first development baseline is established, any changes to the
baseline must be managed under the change control procedures described in
the Software Configuration Management Plan. Approved changes to a
development baseline must be incorporated into the next build of the
software product and revisions made to the affected deliverables (e.g.,
Software Requirements Specification, System Design Document, and
Program Specifications).

Document the internal build test procedures and results. Identify errors and
describe the corrective action that was taken. Place a copy of the internal
build test materials in the Project Test File.

Maintain configuration control logs and records as required in the Software
Configuration Management Plan.

Expand the Requirements Traceability Matrix developed in the
Requirements Definition Phase. All deliverables produced during the code,
unit testing, and build processes must be traced back to the project
requirements and system design. This traceability ensures that the product
will satisfy all of the requirements and remain within the project scope. Place
a copy of the expanded Requirements Traceability Matrix in the Project
Notebook.

Conduct peer reviews on the internal build test materials to be placed in the
Project Test File. Conduct structured walkthroughs on any updated
documents, e.g., the Requirements Traceability Matrix.

November 2001 Page 8-9 Programming Phase

Section 8: Programming Phase

Plan Transition to Operational Status

Responsibility:

Description:

Deliverables:

Project Team

Successful transition from acceptance testing to full operational use of the
software product depends on planning the transition long before the software
product is installed in its operational environment. In planning for the
transition, quantify the operational needs associated with the software
product and describe the procedures that will be used to perform the
transition. Rely on experience and data gathered from previous, similar
projects to define these needs.

Develop a Transition Plan that describes the detailed plans, procedures, and
schedules that will guide the transition process. Coordinate development of
the plan with the operational and maintenance personnel. The following
issues should be considered in the preparation of a Transition Plan:

 Develop detailed operational scenarios to describe the functions to be

performed by the operational support staff, maintenance staff, and
customers.

 Define the number and qualifications of operations and maintenance

personnel and specify when they must be in place. Estimate training
requirements for these people.

 Document the release process. If development is incremental, define the

particular process, schedule, and acceptance criteria for each release.

 Describe the development or migration of data, including the transfer or

reconstruction of historic data. Schedule ample time for the system
owner and customer to review the content of reconstructed or migrated
data files to reduce the chance of errors or omissions.

 Specify problem identification and resolution procedures for the

operational software product.

 Define the configuration management procedures that will be used for

the operational software product. Ideally, the methods defined in the
Software Configuration Management Plan that were employed during
product development can continue to be used for the operational
product.

 Define the scope and nature of support that will be provided by the

project team during the transition period.

 Specify the organizations and individuals that will be responsible for

each transition activity, ensuring that responsibility for the software
product by the operations and maintenance personnel increases
progressively.

 Identify products and support services that will be needed for day-to-day

operations or that will enhance operational effectiveness.

November 2001 Page 8-10 Programming Phase

Section 8: Programming Phase

Plan Transition to Operational Status

Review Process:

Resources:

Conduct a structured walkthrough to assure that the Transition Plan is
logical, accurate, and complete. Involve operational and maintenance
personnel in the walkthrough.

A Transition Plan template is available on the Research and Policy Web site
at: http://www.michigan.gov/dit.

November 2001 Page 8-11 Programming Phase

Section 8: Programming Phase

Generate Operating Documentation

Responsibility:

Description:

Steps:

Project Team/Technical Writer

Plan, organize, and write the operating documentation that describes the
functions and features of the software product from the customers point-of-
view. The different ways that customers (including system administration
and maintenance personnel) will interact with the software product must be
considered. The needs of the customers should dictate the document
presentation style and level of detail. Responsibilities for changing and
maintaining the documents should be described in each document.

The following are typical operating documents for a large software project:

 Procedure Manual
 Programmers Reference Manual
 Systems Administration Manual
 Data Base Administration Manual
 Operations Manual

It is recommended that a technical writer be involved in the generation of all
operating documents. A technical writer works closely with the project team
to ensure that documents are grammatically correct; comply with applicable
standards; and are consistent, readable, and logical.

Note: The operating documents can be developed as separate manuals or
combined to accommodate less complex software projects.

Use the following steps to develop the operating documentation:

 Identify the operating documents that need to be developed. Determine

if any of the documents can be combined or delivered as multiple
volumes.

 Determine whether the documents should be provided as printed

material, standalone electronic files, online documentation accessed
through the software product, or a combination.

 Determine the best presentation method or combination of methods

required for each of the documents, such as a traditional manual, quick
reference guide or card, or online help.

 Identify all of the features of the software customer interface and the

tasks customers will perform.

 Identify the customers' needs and experience levels to determine:

- The amount of customer interaction, level of interaction, and
whether the interaction is direct or indirect.

- The appropriate level of detail (e.g., the Procedure Manual should
not contain highly technical terms and explanations that may
confuse or frustrate a customer).

November 2001 Page 8-12 Programming Phase

Section 8: Programming Phase

Generate Operating Documentation

Steps
Continued:

Deliverables:

Review Process:

Tasks:

 Determine the document content and organization based on whether the
document will be used more as an instructional tool or a reference guide.

 Develop descriptions of each function and feature of the software
product and organize the information to facilitate quick, random access.
Provide appropriate illustrations to enhance clarity and understanding.

 Establish a schedule for the documents to be reviewed after the software

product goes into production. Operating documents must be kept up-to-
date as long as the software product remains in production.

Refer to each task for applicable deliverables.

Refer to each task for applicable review processes.

The following tasks describe the minimum requirements for operating
documentation:

Develop Procedures Manual
Develop Programmers Reference Manual

November 2001 Page 8-13 Programming Phase

Section 8: Programming Phase

Develop Procedures Manual

Description:

Deliverables:

The Procedure Manual provides detailed information customers need to
access, navigate through, and operate the software product. Customers rely
on the Procedure Manual to learn about the software or to refresh their
memory about specific functions. A Procedure Manual that is organized
functionally so that the information is presented the same way the software
product works helps customers understand the flow of menus and options to
reach the desired functions.

Different categories of customers may require different types of information.
A modular approach to developing the Procedure Manual to accommodate
the needs of different types of customers eliminates duplication and
minimizes the potential for error or omission during an amendment or
update. For example, separate general information that applies to all
customers from the special information that applies to selected customers
such as system administrators or data base administrators. The special
information can be presented in appendixes or supplements that are only
provided to the customers who need the information.

Write the draft Procedure Manual in clear, non-technical terminology that is
oriented to the experience levels and needs of the customer(s). The following
are typical features of a procedure manual:

 Overview information on the history and background of the project and

the architecture, operating environment, and current version or release
of the software product.

 Instructions for how to install, setup, or access the software product.

Complete coverage of all software functions, presented in a logical,
hierarchical order.

 Accurate pictures of screens and reports, ideally with data values shown,

so the customer can easily relate to examples.

 In-depth examples and explanations of the areas of the software product

that are most difficult to understand.

 Clear delineation of which features are accessible only to specific

customers.

 Instructions on accessing and using online help features.

 Procedures for data entry.

 Descriptions of error conditions, explanations of error messages, and

instructions for correcting problems and returning to the function being
performed when the error occurred.

 Instructions for performing queries and generating reports.

 Who to contact for help or further information.

November 2001 Page 8-14 Programming Phase

Section 8: Programming Phase

Develop Procedures Manual

Deliverables
Continued:

Review Process:

Note: For large or complex software products, separate manuals (e.g.,
Procedure Manual, Data Base Administrator's Manual, and System
Administrator's Manual) may be necessary to address the needs of different
categories of customers.

For very small projects, a quick reference guide or card may be more
appropriate than a full-scale Procedure Manual. The guide or card should be
designed to provide a quick reference of logon, logoff, and commands for
frequently used functions.

For projects of any size, a quick reference card may be developed as a
supplement to more detailed customer documentation.

Conduct structured walkthroughs for the draft Procedure Manual or set of
customer documents to assure that the documentation is complete, easy to
use, and accurately reflects the software product and its functions.

The draft customer documentation will be tested and verified with the
software product during the Software Integration and Testing Phase.

November 2001 Page 8-15 Programming Phase

Section 8: Programming Phase

Develop Programmers Reference Manual

Description:

Deliverables:

Review Process:

The Programmers Reference Manual contains programming information
used by the maintenance staff to maintain the programs, databases,
interfaces, and operating environment. The Programmers Reference Manual
should provide an overall conceptual understanding of how the software
product is constructed and the details necessary to implement corrections,
changes, or enhancements.

The Programmers Reference Manual describes the logic used in developing
the software product and the functional and system flow to help the
maintenance programmers understand how the programs fit together. The
information should enable a programmer to determine which programs may
need to be modified to change a system function or to fix an error.

The following are typical features of a Programmers Reference Manual:

 A description of the technical environment, including versions of the

programming language(s) and other proprietary software packages.

 A brief description of the design features including descriptions of

unusual conditions and constraints.

 An overview of the software architecture, program structure, and

program calling hierarchy.

 The design and programming standards and techniques used to develop

the software product.

 Concise descriptions of the purpose and approach used for each

program.

 Layouts for all data structures and files used in the software product.
 Descriptions of maintenance procedures, including configuration

management, program checkout, and system build routines.

 The instructions necessary to compile, link, edit, and execute all

programs.

 Manual and automated backup procedures.
 Error processing features.

Use appendixes to provide detailed information that is likely to change as the
software product is maintained. For example, a list of program names and a
synopsis of each program could be included as an appendix.

Conduct structured walkthroughs of the draft Programmers Reference
Manual to assure that the documentation is complete, easy to use, and
accurately reflects the software product and its functions.

The draft Programmers Reference Manual will be tested and verified with
the software product during the Software Integration and Testing Phase.

November 2001 Page 8-16 Programming Phase

Section 8: Programming Phase

Develop Training Program

Responsibility:

Description:

Deliverables:

Project Team

A Training Program defines the training needed to implement and operate
the software product successfully. The Training Plan should address the
training that will be provided to the system owner, customers, and
maintenance staff. When new hardware or software is being used, affected
personnel will need hands-on experience before bringing the new equipment
or software into daily operation.

Training must address both the knowledge and the skills required operating
and using the system effectively. Design the training program to accomplish
the following objectives:

 Provide trainees with the specific knowledge and skills necessary to

perform their work.

 Prepare training materials that will sell the software product as well as

instruct the trainees. The training program should leave the trainees with
the enthusiasm and desire to use the new product.

 Account for the knowledge and skills the trainees bring with them, and

use this information as a transition to learning new material.

 Anticipate the needs for follow-on training after the software product is

fully operational, including refresher courses, advanced training, and
repeats of basic courses for new personnel.

 Build in the capability to update the training as the software product

evolves.

Involve the system owner and key customers in the planning to determine
the education and training needs for all categories of customers (managers,
customers, and maintenance staff).

Prepare a draft Training Plan that describes the Training Program and at a
minimum addresses the following issues:

 Identifies personnel to be trained. Review the list of trainees with the

system owner and customers to ensure that all personnel who should
receive training have been identified.

 Defines the overall approach to training and the required training

courses.

 Establishes the scope of the training needed for customers, management,

operations, and maintenance personnel.

 Define how and when training will be conducted. Specify instructor

qualifications, learning objectives, and mastery or certification
requirements (if applicable).

November 2001 Page 8-17 Programming Phase

Section 8: Programming Phase

Develop Training Program

Deliverables
Continued:

 Identify any skill areas for which certification is necessary or desirable.
Tailor the training to the certification requirements.

 Establish a preliminary schedule for the training courses. The schedule

must reflect training requirements and constraints outside the project.
Schedule individual courses to accommodate personnel who may
require training in more than one area. Identify critical paths in the
training schedule such as the time period for the software product's
installation and conversion to production status.

 Define the required course(s), outline their content and sequence, and

establish training milestones to meet transition schedules.

 Tailor the instruction methods to the type of material being presented.

Include classroom presentation, interactive computer-assisted
instruction, demonstrations, individual video presentations, and hands-
on experience, either live or simulated.

 Identify trainers who are technically knowledgeable and were involved

in the design and development of the system. For projects with
extensive and formal training requirements, it may be necessary to
provide training for the trainers.

 Consider availability of the following: customers, system-tested

software, training rooms and equipment, and the completion of system
documentation and training materials.

You may also include the following:

 Identify the organization’s training policy for meeting training needs.

 Ensure software managers have received orientation on the training

program

 Ensure training courses prepared at the organization level are developed

and maintained according to organizational standards.

 Ensure a wavier procedure for required training is established and used

to determine whether individuals already possess the knowledge and
skills required to perform in their designated area.

 Ensure measurements are made and used to determine the status of the

training program activities.

 Ensure training program activities are reviewed with senior management

on a periodic basis.

 Ensure the training program is independently evaluated on a periodic

basis for consistency with, and relevance to, the organization’s needs.

November 2001 Page 8-18 Programming Phase

Section 8: Programming Phase

Develop Training Program

Deliverables
Continued:

Review Process:

Resource:

 Ensure the training program activities and deliverables are reviewed
and/or audited and the results are reported.

 Ensure training records are properly maintained.

Place a copy of the draft Training Plan in the Project Notebook. The plan
will be reviewed and updated during the Software Integration and Testing
Phase.

Conduct a structured walkthrough to assure that the draft Training Plan is
accurate and complete.

A Training Plan template is available on the Research and Policy Web site
at: http://www.michigan.gov/dit

November 2001 Page 8-19 Programming Phase

http://www.state.mi.us/cio/oits

Section 8: Programming Phase

Conduct Programming Phase Exit

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once the coding effort is completed and unit and integration testing have
been conducted, determine if the project estimates for resources, cost, and
schedule need to be revised.

Review the Project Plan for accuracy and completeness of all Programming
Phase activities and make any changes needed to update the information.
Expand the information for the Software Integration and Testing Phase to
reflect accurate estimates of resources, costs, and hours. Place a copy of the
revised Project Plan in the Project Notebook.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to ensure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the Software Integration and Testing Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

November 2001 Page 8-20 Programming Phase

Section 8: Programming Phase

Conduct Programming Phase Exit

Conduct Structured Walkthroughs

Responsibility:

Description:

SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the Programming Phase, schedule at least one structured walkthrough
to review each of the Programming Phase deliverables, i.e., Acquisition
Plan, draft of the Installation Plan, Integration Test Plan, System Test Plan,
Software Baseline, Transition Plan, draft of the Operating Documents, and
the draft Training Plan.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the Programming Phase Exit process.
Additional IPAs can be performed during the phase, as appropriate.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct Programming Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

Schedule the Phase Exit as the last activity of the Programming Phase. It is
the responsibility of the project manager to notify the appropriate
participants when a project is ready for the Phase Exit process and to
schedule the Phase Exit meeting. All functional areas and the Quality
Assurance representative involved with the project should receive copies of
the deliverables produced in this phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 8-21 Programming Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 9

SOFTWARE INTEGRATION AND TESTING
PHASE

Section 9: Integration and Testing Phase

Table of Contents

Software Integration and Testing Phase ... 9-0

Highlights of Phase ..9-1
Overview ...9-2
Conduct Integration Testing ... 9-3
Conduct System Testing .. 9-5
Initiate Acceptance Process ... 9-6
Conduct Acceptance Test Team Training ... 9-8
Develop Maintenance Plan .. 9-9
Revise Project Plan .. 9-11
Conduct Acceptance Test .. 9-12
Conduct Acceptance Process .. 9-14
Alpha, Beta, Gamma Test Product .. 9-15
Conduct Project Reviews .. 9-20
Guidelines for Procedure Manual .. 9-21
Technical Reference Guide ... 9-22

November 2001 Page 9-i Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Highlights of Phase

Forms Utilized
Pre-Acceptance Checklist
Pre-Acceptance Security Issues Checklist
Software Maintenance Plan

Methods and Tools

Structured Walkthroughs

Peer Reviews

In-Phase Assessment

Quality Reviews

Phase Exit

Key Activities:

Conduct Integration Testing
Conduct System Testing
Initiate Acceptance Process
Conduct Acceptance Test Team Training
Develop Maintenance Plan
Revise Project Plan
Conduct Acceptance Test
Conduct Acceptance Process
Beta Test Product
Conduct Structured Walkthroughs
Conduct In-Phase Assessment
Conduct Software Integration and Testing Phase Exit

Outputs:

 Integration Test Reports
 System Test Report
 Operating Documents (final)

- Procedure Manual
- Programmers Reference Manual

 Training Plan (final)
 Installation Plan (final)
 Acceptance Test Report
 Acceptance Checklist
 Acceptance Test Plan (final)
 Pre-acceptance Checklist
 Security Checklist
 Error Reporting and Tracking System (optional)
 Requirements Traceability Matrix (final)
 Maintenance Plan (draft)
 Project Plan (revised)

Inputs:

 Project Notebook
 Acceptance Test Plan (draft)
 Acquisition Plan
 Installation Plan (draft)
 Software modules
 Requirements Traceability Matrix (expanded)
 Project Test File
 Development baselines
 Transition Plan
 Operating Documentation (draft)

- Procedure Manual
- Programmers Reference Manual

 Training Plan (draft)
 Integration Test Plan
 System Test Plan
 Project Plan
 Software Quality Assurance Plan

Software Integration and Testing Phase

November 2001 Page 9-1 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Overview

Description:

Review Process:

SDLC References:

Software integration and testing activities focus on interfaces between and
among components of the software product, such as functional correctness,
system stability, overall system operability, system security, and system
performance requirements (e.g., reliability, maintainability, and availability).
Software integration and testing performed incrementally provides feedback
on quality, errors, and design weaknesses early in the integration process.

In this phase, software components are integrated and tested to determine
whether the software product meets predetermined functionality,
performance, quality, interface, and security requirements. Once the software
product is fully integrated, system testing is conducted to validate that the
software product will operate in its intended environment, satisfies all
customer requirements, and is supported with complete and accurate
operating documentation.

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Lifecycle Model section. The time and
resources needed to conduct the quality reviews should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model, Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Section 12, Emergency Maintenance, provides an overview of the software
emergency maintenance process.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

.

November 2001 Page 9-1 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Integration Testing

Responsibility:

Description:

Integration of Components:

1) Software components;
2) Off-the-shelf software;
3) Reusable code or modules

Project Team Programmers

During software integration, the software components developed by the
programming staff, off-the-shelf software purchased from vendors and
reusable code or modules obtained from other sources are assembled into
one software product. Each assembly is tested in a systematic manner in
accordance with the Integration Test Plan. An incremental approach to
integration enables verification that as each new component is integrated, it
continues to function as designed and both the component and the integrated
product satisfy their assigned requirements.

Integration testing is a formal procedure that must be carefully planned and
coordinated with the completion dates of the unit-tested modules. Integration
testing begins with a software structure where called sub-elements are
simulated by stubs. A stub is a simplified program or dummy module
designed to provide the response (or one of the responses) that would be
provided by the real sub-element. A stub allows testing of calling program
control and interface correctness. Integration testing precedes unit-tested
modules or builds as replace stubs. This process continues one element at a
time until the entire system has been integrated and tested.

Integration testing may be performed using "bottom up" or "top down"
techniques. Most integration test plans make use of both bottom-up and top-
down techniques.

Scheduling constraints and the need for parallel testing will affect the test
approach.

The bottom-up approach incorporates one or more modules into a build; tests
the build; and then integrates the build into the software structure. The build
normally Comprises a set of modules that perform a major function of the
software system. Initially, a stub that is replaced when the build is integrated
may represent the function.

In the top-down approach, individual stubs are replaced so that the top-level
control is tested first, followed by stub replacements that move downward in
the software structure. Using top-down integration, all modules that
comprise a major function are integrated, thereby allowing an operational
function to be demonstrated prior to completion of the entire system.

Each requirement identified in the Software Requirements Specification
must be tested during integration testing. This traceability ensures that the
software product will satisfy all of the requirements and will not include
inappropriate or extraneous functionality. Expand the Requirements
Traceability Matrix developed in the Requirements Definition Phase to relate
the integration test to the requirements. Place a copy of the expanded matrix
in the Project Notebook.

November 2001 Page 9-2 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Integration Testing

Description
Continued:

Deliverables:

Optional
Deliverables:

Review Process:

At the completion of each level of integration testing, a test report is written.
The report documents test results and lists any discrepancies that must be
resolved before the tested components can be used as the foundation for
another integration level. Place a copy of all integration test materials in the
Project Test File.

A final test report is generated at the completion of integration testing
indicating any unresolved difficulties that require management attention.
Place a copy of the final Integration Test Report in the Project Notebook.

A formal reporting system by which detected errors and discrepancies are
recorded and fully described is recommended. These reports will help to
confirm that all known errors are fixed before implementation of the
completed software product. Error reports also help to trace multiple
instances of the same error or anomalous behavior, so that error correction
and prevention assignments can be implemented. The Quality Assurance
representative assigned to the project can provide assistance in developing
and using an error reporting/tracking system.

Conduct a structured walkthrough of the Requirements Traceability Matrix
and final Integration Test Report.

November 2001 Page 9-3 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct System Testing

Responsibility:

Description:

Deliverables:

Review Process:

Project Team or Independent Test Team

During system testing, the completely integrated software product is tested
to validate that the product meets all requirements. System response timing,
memory, performance, security, and the functional accuracy of logic and
numerical calculations are verified under both normal and high-load
conditions. Query and report capabilities are exercised and validated. All
operating documents are verified for completeness and accuracy.

System testing is conducted on the system test bed using the methodology
and test cases described in the System Test Plan. The system test bed should
be as close as possible to the actual production system. Either the project
team or an independent test team conducts system testing to assure that the
system performs as expected and that each function executes without error.
The results of each test are recorded and upon completion included as part of
the project test
documentation.

When errors are discovered, the test team leader to determine the severity
and necessary subsequent action should review them. If appropriate, minor
problems can be corrected and regression tested by the project team
programmers within the time frame allotted for the system test. Any
corrections or changes to the software product must be controlled under
configuration management. Major problems may be cause to suspend or
terminate the system test, which should then be rescheduled to begin after all
of the problems are resolved.

Customers may be encouraged to participate in the system tests to gain their
confidence in the software product and to receive an early indication of any
problems from the customer's perspective. Inform customers that errors and
discrepancies may occur during testing and explain the error correction,
configuration management, and retest processes.

At the successful conclusion of system testing, the software product is ready
for installation and acceptance testing. Review the draft versions of the
operating documents, Training Plan, and Installation Plan. Update the
documents as needed. Deliver the final versions of the operating documents,
Training Plan, and Installation Plan to the system owner and customer for
review and approval. Place a copy of the approved documents in the Project
Notebook. Place a copy of all system test materials (e.g., inputs, outputs,
results, and error logs) in the Project Test File.

Generate a test report at the conclusion of the system test process. The report
documents the system test results and lists any discrepancies that must be
resolved before the software product is installed and prepared for acceptance
testing. Place a copy of the report in the Project Notebook.

Conduct a structured walkthrough of the system test report.

November 2001 Page 9-4 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Initiate Acceptance Process

Responsibility:

Description:

Steps:

Deliverables:

Project Manager

The acceptance process is used to officially accept new or modified software
products that satisfy the project requirements and are fully operational. The
initiation of the acceptance process begins after the successful completion of
system testing. Prior to the initiation of the acceptance process, review the
draft Acceptance Test Plan. Make any additions or changes needed to assure
that the test plan reflects the current version of the software requirements.

The acceptance process is initiated with the completion of a Pre-acceptance
Checklist. This list helps to ensure that all necessary pre-acceptance
activities have been completed and that the required operating documents
were developed and approved. The Pre-acceptance Security Issues Checklist
helps to ensure that security issues were addressed and should be completed
by the system owner, as appropriate.

As part of the acceptance process, ensure that all documented issues
identified during previous quality reviews have been resolved. Also, the
support team should have been identified, including Hotline support. Copies
of the approved operating and project documents should be provided to the
support team who will maintain the system once it is accepted and
transitioned to operational status. An operational analysis of the project
should be conducted for support issues.

Use the following steps to initiate the acceptance process:

 The project manager notifies the Quality Assurance representative

assigned to the project that the project is ready to start the acceptance
process.

 The Quality Assurance representative sends the Pre-acceptance

Checklist and Pre-acceptance Security Issues Checklist to the project
manager.

 The project manager completes the checklists, obtains the concurrence

signature of the system owner (if required), and returns the completed
checklists to the Quality Assurance representative.

 The Quality Assurance representative schedules an initial acceptance

process meeting. More than one meeting may be necessary to
accommodate customers at different locations or with varying
requirements.

Each requirement identified in the Software Requirements Specification
must be tested during acceptance testing. This traceability ensures that the
software product has satisfied all of the requirements and does not include
inappropriate or extraneous functionality. Expand and finalize the
Requirements Traceability Matrix developed in the Requirements Definition
Phase to relate the acceptance test to the requirements. Place a copy of the
expanded matrix in the Project Notebook.

November 2001 Page 9-5 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Initiate Acceptance Process

Deliverables
Continued:

Review Process:

Resource:

Review the draft version of the Acceptance Test Plan, and update as needed.
Deliver the final version of the Acceptance Test Plan to the system owner,
customer, and other project stakeholders for review and approval prior to
conducting any acceptance tests. Place a copy of the approved Acceptance
Test Plan in the Project Notebook.

After the Quality Assurance representative supporting the project reviews
the Pre-acceptance Checklist and Pre-acceptance Security Issues Checklist,
place copies in the Project Notebook.

Conduct structured walkthroughs of the Requirements Traceability Matrix,
Pre-acceptance Checklist and Pre-acceptance Security Issues Checklist.

The Pre-acceptance Checklist and Pre-acceptance Security Issues Checklist
are available on the Research and Policy Web site at:
http://www.michigan.gov/dit.

November 2001 Page 9-6 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Acceptance Test Team Training

Responsibility:

Description:

Deliverables:

Review Process:

Project Team

If the project team is not conducting the Acceptance Test, training may be
required for the personnel performing the testing. The acceptance test
participants and their experience with the software product and the operating
environment should have been identified in the Acceptance Test Plan.

The level of training will depend on the testers' familiarity with the software
product and the platform on which the software will run. The advantage of
having customer’s acceptance test the software product is that they are the
experts most familiar with the business information flow and how the
software product must fit into the workplace.

It is recommended that the operating documents and other test materials be
distributed to the test team prior to the actual start of the acceptance test
training. This will give the test team time to become familiar with the
software product and the test process and procedures.

Not applicable.

Not applicable.

November 2001 Page 9-7 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Develop Maintenance Plan

 Responsibility:

Description:

Project Manager

The purpose of the Maintenance Plan is to determine the scope of the
maintenance effort, identify the maintenance process and tools, quantify the
maintenance effort (personnel and resources), and identify anticipated
maintenance requirements. The Maintenance Plan needs to define the
maintenance process and its boundaries or scope. The maintenance process
beginning point should be defined (e.g., receipt of a change request or
planned COTS version upgrade) and the ending action should be defined
(e.g., implementation and sign-off of a product). The process is a natural
outgrowth of many of the configuration management procedures. A
description of the overall flow of work within the maintenance process
should be included. The maintenance process can be tailored to the type of
maintenance being performed and can be divided in several different ways.
This can include different processes for corrections or enhancements, small
changes or large changes, etc.

The maintenance requirements need to be identified and quantified (sized) in
the Maintenance Plan to determine the future maintenance load for the
organization.

The following issues should be considered when defining the requirements:

 Expected external or regulatory changes to the software
 Expected internal changes to support new requirements
 Requirements deferred from current project to later release
 Wish-list of new functions and features
 Expected upgrades for performance, adaptability, connectivity, etc.
 New lines of business that need to be supported
 New technologies that need to be incorporated

The requirements for the maintenance staff also need to be established. At
this phase, the maintenance plan should address the following:

 Number of maintainers, their job descriptions, and required skill levels
 Experience level of the maintenance staff
 Documented maintenance processes at the systems and program levels
 Actual methods used by programming staff
 Tools used to support the maintenance process
 Current work load and estimates of future needs

An important part of the maintenance plan is an analysis of the hardware and
software most appropriate to support the maintenance organization’s needs.
The development, maintenance, and test platforms should be defined and
differences between the environments described. Tools sets that enhance
productivity should be identified and provided. Tools should be accessible to
all that need them, and sufficient training provided so that their use will be
well understood.

November 2001 Page 9-8 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Develop Maintenance Plan

Description
continued:

Deliverables:

Review Process:

SDLC Reference:

Resource:

Although all systems need maintenance, there comes a time when
maintenance is no longer technically or fiscally viable. Issues such as
resources, funds, and priorities may dictate that a system should be replaced
rather than changed. The maintenance plan should identify the criteria that
indicate the software product is ready for retirement or replacement, such as
the failure rate, age of code, and incompatibility with current technology.

Develop the Maintenance Plan. Place a copy of the draft Maintenance Plan
in the Project Notebook.

Conduct a structured walkthrough to ensure that the Maintenance Plan
accurately reflects the necessary information.

The Maintenance Plan is formally reviewed during the
In-Phase Assessment and Phase Exit processes.

Refer to Section 12, Emergency Maintenance, for more information on
maintaining the software.

A template for the Software Maintenance Plan is available on the Research
and Policy Web site at:
http://www.michigan.gov/dit.

November 2001 Page 9-9 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Revise Project Plan

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once the integration and system tests are completed, determine if the project
estimates for resources, cost, and schedule need to be revised.

Review the Project Plan for accuracy and completeness of all Software
Integration and Testing Phase activities and make any changes needed to
update the information. Expand the information for the Installation and
Acceptance Phase to reflect accurate estimates of resources, costs, and hours.
Place a copy of the revised Project Plan in the Project Notebook.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to ensure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the Installation and Acceptance Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

November 2001 Page 9-10 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Acceptance Test

Responsibility:

Description:

1) Obtain acceptance of software;
2) Prepare a formal acceptance

test report

Deliverables:

Review Process:

Acceptance Test Team

Acceptance of a delivered software product is the ultimate objective of a
software development project. Acceptance testing is used to demonstrate the
software product's compliance with the system owner's requirements and
acceptance criteria.

At the system owner's discretion, the project team may perform acceptance
testing, by the system owner and customers with support from the project
team, or by an independent verification and validation team. Whenever
possible, customers should participate in acceptance testing to assure that the
software product meets the customers' needs and expectations. All
acceptance test activities should be coordinated with the system owner,
customer(s), operations staff, and other affected organizations.

Acceptance testing is conducted using acceptance test data and test
procedures established in the Acceptance Test Plan. Testing is designed to
determine whether the software product meets functional, performance, and
operational requirements. If acceptance testing is conducted on an
incremental release basis, the testing for each release should focus on the
capabilities of the new release while verifying the correct operation of the
requirements incorporated in the previous release.

Acceptance testing usually covers the same requirements as the system test.

Acceptance testing may cover additional requirements that are unique to the
operational environment. The results of each test should be recorded and
included as part of the project test documentation.

Subject the test environment to strict, formal configuration control to
maintain the stability of the test environment and to assure the validity of all
tests. Review the acceptance test environment, including the test procedures
and their sequence, with the system owner and customer before starting any
tests.

Testing is complete when all tests have been executed correctly. If one or
more tests fail, problems are documented, corrected, and retested. If the
failure is significant, the acceptance test process may be halted until the
problem is corrected.

Prepare a formal Acceptance Test Report. Summarize the test procedures
executed, any problems detected and corrected, and the projected schedule
for correcting any open problem reports. Place a copy of all acceptance test
materials in the Project Test File.

Conduct an Operational Readiness Review at the completion of acceptance
testing. This review is a combined quality assurance and configuration
management activity. It focuses on the results of the acceptance test and the
readiness of the software product to go into production.

November 2001 Page 9-11 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Acceptance Test

Review Process
Continued:

The Operational Readiness Review includes a functional configuration audit
to determine whether the test records demonstrate that the product meets its
technical requirements, and a physical configuration audit to determine
whether the product technical documentation is complete and accurately
describes the software product.

During the Operational Readiness Review examine acceptance test results
with the system owner and customer. Document any problems, determine
solutions to the problems, and implement action plans. Once any problems
associated with the acceptance test are resolved, the software product is
ready for formal acceptance by the system owner.

A successful Operational Readiness Review establishes the operational
baseline for the software product. The operational baseline is the final
baseline. It consists of the software product and the technical documentation
that describes the operational software and its characteristics. It contains the
current functional baseline, the product baselines for the configuration items
comprising the system, and other system-level technical documentation
generated during the lifecycle.

If the operational product requires enhancements or changes to correct
problems, each new release should be preceded by an Operational Readiness
Review, after which the updated system documentation is established as a
new operational baseline superseding the previous one.

November 2001 Page 9-12 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Acceptance Process

Responsibility:

Description:

Steps:

Deliverables:

Review Process:

Resource:

Project Manager

The acceptance process is used to officially accept new or modified software
products that satisfy the customers' requirements and are fully operational.
The acceptance process is concluded when the acceptance test has been
successfully completed, the software product has been installed and is
operational at all customer sites, and complete operating documentation
describing the product has been approved and delivered.

At the conclusion of the acceptance process, responsibility for the software
product is formally transferred from the project team to the system owner
and maintenance staff.

Use the following steps to conclude the acceptance process:

 The project manager notifies the Quality Assurance representative

assigned to the project that the software product is ready to complete the
acceptance process.

 The Quality Assurance representative sends the Acceptance Checklist to

the project manager.

 The project manager completes the checklist, obtains the concurrence

signature of the system owner (if required), and returns the completed
checklist to the Quality Assurance representative.

 The Quality Assurance representative schedules an acceptance meeting.

More than one meeting may be necessary to accommodate customers at
different locations or with varying requirements.

The Acceptance Checklist is completed and submitted to the Quality
Assurance representative supporting the project. This list helps to ensure that
all necessary acceptance activities have been completed and that the required
operating documents were developed and approved.

The system owner to verify that the software product is acceptable and ready
for production develops a formal written acceptance of the software product.

Conduct structured walkthroughs or peer reviews of the Acceptance
Checklist.

An Acceptance Checklist is available on the Research and Policy Web site
at: http://www.michigan.gov/dit.

November 2001 Page 9-13 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Alpha, Beta, Gamma Test Product

Responsibility:

Description:

Step 1: Alpha:

Version Implementation:

The purpose of the integration and testing phase is to build the application
and and test it to verify that it works as stated in the design specifications
and prototype. Typically the application is developed through a series of fast
builds, which are often called alpha, beta and gamma, especially in
multimedia production:

1. Alpha: the first full implementation of the original application design
2. Beta: modifications and changes based on usability testing feedback,

whereupon the application design is frozen
3. Gamma: final programming and data preparation

The building and testing is an iterative process of coding, testing, correcting
defects, and re-testing.

"Alpha" is used to refer to the segment during which the first complete
implementation of application takes place, and which results in the "alpha
version" of the application. The alpha version represents the first overall
completion of the program functionality, i.e. it contains (nearly) full
functionality but may not contain all the final content. The alpha version is
often not rigorously tested for software defects.

In larger projects, the alpha step is divided into several mini milestones
called versions. Each new version contains additional modules from the
application design. In the example below, delivery of V.04 would
correspond to delivery of the "alpha version" and thus would complete the
alpha segment.

 Main page Feature Set 1 Feature Set 2 Feature Set 3 Miscellaneous Features
Version 01 x x
Version 02 x x x
Version 03 x x x x
Version 04 x x x x x

November 2001 Page 9-14 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Alpha, Beta, Gamma Test Product

Version Implementation
Continued:

Keeping bug lists:

Starting Documentation:

Testing:

 The version implementation approach effectively breaks the application into
discrete modules. This approach has several advantages, including:

Independent implementation: several developers can work on the
program simultaneously and thereby helps to minimize the overall
development time.

Error containment: individual developers work on individual modules,
errors can be contained to those particular modules (rather than
spreading the same errors throughout the application).

Unit testing: completing each module independently permits testing to
be done much earlier in the process.

By testing the individual modules early in the development phase, you will
get immediate feedback on the quality of the code. The feedback can be of
great use in keeping track of errors as they are found and fixed. The best way
to keep track of software defects (bugs) is with a database in which each
defect is entered, along with information that pertains to it, such as:

a unique identification number
a description the defect
where it occurred
which version of the program it was found in
relative severity
instructions on how to replicate it
the date is was reported
current status
who reported it
and so on

When categorizing the bugs, it is helpful to make a distinction between
software errors, content errors, and design issues.

The alpha segment is the right time to start writing the user guide and other
system documentation (e.g. System Operation Guide, Technical Reference).
The guide should be outlined based on the planning done in the application
design phase. It can even be written, to some extent, while allowing for the
fact that it will have to revised if there are design changes.

It's good idea to start on the guide early, because if you wait until the beta
segment, time will be short, and the software may be completed first.

The alpha version represents the earliest opportunity to show the customer
and users the actual application up and running. The sooner you can find any
problems in the design, the easier they can be fixed. Software defects are to
be expected in the alpha version.

The purpose of such alpha users testing is primarily to make sure the
application will meet its requirements, not to test the reliability of the
software.

November 2001 Page 9-15 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Alpha, Beta, Gamma Test Product

Testing Continued:

Significance of the
Alpha Version:

Accepting the Alpha Version:

Step 2 Beta:

Freeze the Features:

Because of the bugs of the alpha version, the user testing should be
conducted (or at least started) by having a demonstrator or facilitator to
operate the application, rather than asking the users to do it on their own.
The alpha segment is a good time to start writing quality assurance testing
specifications from the application design. The goal is to create a detailed
checklist of all functions and features contained in the application, to be used
in the full quality assurance testing (which may begin as early as the beta
step).

The alpha version is of significant psychological benefit, because it is the
first time team members actually see the multimedia application up and
running. The application is suddenly "real", after the long and sometimes
painful period of specifications and design.

Another significant benefit of the alpha version is that you will learn if the
chosen hardware and software platform can support the user interface and
application features as designed.

During the alpha segment, team members working with data preparation will
produce samples to be used in the alpha version. By doing this, the team will
be able to spot any potential problems and concerns related to the creation
and conversion of the required data elements.

Alpha segment ends when the alpha version is completed and accepted by
the client. This sounds simple, but usually it is quite difficult to agree when
the application has reached the alpha segment. This is because 1) many
design changes compared with the original requirements specification, and
2) the difficulty of implementing all of the functionality specified when the
specification is continuously changing as the development work progresses.
Finally, the decision if a version qualifies as alpha, will be made by the
client.

Once the alpha version has been accepted, it must be evaluated. This usually
leads to a period of re-design and modification. The period of modification
and final design is referred to as the beta segment of the development phase.
The beta segment ends with the acceptance of the final beta version, in
which the design changes and modifications have been implemented. At this
point the design is "frozen", with little opportunity for anyone to modify it.

During the beta segment, any remaining design modifications should be
resolved as soon as possible. To avoid time consuming and costly changes in
the final application, the modifications should be proposed and decided upon
early in the beta segment, and they should be kept to an minimum. The beta
segment is one of the riskiest parts of a project.

In the end, however, a time comes during the development of any application
when the design must be frozen; otherwise it will never be finished. Instead
of accepting new modifications, a good approach is to start to use a "wish
list" for the next version of the application.

November 2001 Page 9-16 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Alpha, Beta, Gamma Test Product

Final Customer Interface:

Minimizing Features Creep:

Procedure Manual:

Technical Documentation:

Step 3: Gamma:

Completing Data Preparation:

Beta segment is the last (and worst) chance to make modifications to the
customer interface. Any changes made after the final beta version is
complete will usually have serious schedule and cost consequences, because
late changes are disproportionately expensive and time-consuming.
Therefore:

1. support only the most important and easiest-to-implement changes
2. if the changes are really important, make sure they get added

While it is very difficult to avoid the feature creep completely, it can be
minimized in at least three ways:

1. define the cost to implement the desired feature in the quantifiable,

objective terms of time and money
2. give an individual suggesting a new feature the option of putting it on a

wish list for next version
3. "just say no" if appropriate and possible.

During the beta segment, the design and writing of procedure manual and the
packaging artwork should be well underway. While the procedure manual
can be started early based on the application design, if design changes are
accepted during beta, the user guide will have to be altered to reflect those
changes.

For information on what to include in the user guide, please refer to the
Guidelines for Procedure Manual at end of phase.

Any design flaws uncovered or changes made should be well documented,
and the application design documents updated to include those changes.
Simply implementing the changes in the application without adding them to
the documents may create significant problems in the current project and
will certainly cause problems in maintaining and updating the product in the
future.

For information on what to include in the technical documentation, please
refer to the Guidelines for Technical Reference at end of phase.

Once beta version has been completed, data preparation must be finished
and the application subjected to extensive testing. This part of the
development phase is often called the gamma segment. Besides data
preparation, tasks such as packaging, user guide and technical
documentation need to be finished up as well.

The gamma phase is marked by extensive attention to detail and keeping
track of software defects and content errors.

Finishing data preparation requires checking all the various data elements,
including the content of any text, video, audio, graphics, illustrations,
animation and numerical data. This includes e.g. proofreading all the texts
and fixing any typos; linking photos into articles, attaching captions,
cleaning up graphics and so on.

November 2001 Page 9-17 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Alpha, Beta, Gamma Test Product

Testing:

Documentation:

Although the testing should be done all the way during the development
phase, the testing and debugging often forms a tedious and time consuming
part of the gamma segment.

The testing process can be divided into four major segments (with unit
testing being carried out in alpha and beta segments as well):

1. unit testing - testing of smallest logical units of the application
2. integration testing - verifying that multiple modules of application work

together
3. system testing - verifying that the complete application (or systems)

works
4. user acceptance testing - users validate that all elements of the application

(hardware, software, user interface, documentation) meets their
requirements

By the time gamma starts, the user guide and the technical documentation
should be well underway; by the end of the gamma phase, they should be
stabilized and screen shots can be gathered and incorporated into them.
For information on what to include in the documents, please refer to:

Guideline for Procedure Manual
Technical Reference Guide

November 2001 Page 9-18 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Conduct Project Reviews

Conduct Structured Walkthroughs
Responsibility:

Description:

SDLC Reference:

Project Manager, Work Product Author and Reviewers

During the Software Integration and Testing Phase, schedule at least one
structured walkthrough to review each of the Software Integration and
Testing Phase deliverables, i.e., Integration Test Reports, System Test
Report, Operating Documents, Training Plan, Installation Plan, Acceptance
Test Plan and Pre-acceptance Checklist.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Conduct In-Phase Assessment

Responsibility:

Description:

SDLC Reference:

Project Manager and Independent Reviewer

Schedule at least one IPA prior to the Software Integration and Testing
Phase Exit process. Additional IPAs can be performed during the phase, as
needed. Periodic reviews of the integration and system test results and logs
are recommended.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

Conduct Software Integration and Testing Phase Exit

Responsibility:

Description:

SDLC Reference:

Project Manager

During the Phase Exit meeting, participants discuss open issues that will
impact the Project Plan. The project manager should ensure that an
acceptable action plan is developed for handling all open issues. At the
conclusion of the meeting, concurrence is needed from the designated
approvers to begin the next phase.

Note: A Phase Exit is an effective project management tool that is
recommended for all software projects regardless of size. For small software
projects, phases can be combined and addressed during one Phase Exit.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

November 2001 Page 9-19 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Guidelines for Procedure Manual

This document provides guidelines for issues that should be covered in the Procedure Manual. The Procedure
Manual should provide description of all critical features and functions of the application and how to use them.

NOTE: You have to pick up issues relevant to your project. The bigger the application to be produced, the more
detail you have to cover in the User Guide document.

Cover page

Table of Contents

Introduction

• Purpose of the guide
• Intended audience
• How to use the guide
• General conventions used in the guide

Application Overview

• Application objectives
• Situation of the system within the organization

• System context diagram
• Description of major functional components

Graphic User Interface

• Introduction
• General menu/toolbar options
• Online help
• Descriptions of main screens
• Data field and control descriptions
• General task flow diagram
• Task descriptions

• why, when, how, error handling
Appendix

November 2001 Page 9-20 Software Integration and Testing Phase

Section 9: Integration and Testing Phase

Guidelines for Technical Reference Guide

This page provides guidelines for issues that should be covered in the Technical Reference Guide. The Technical
Reference Guide should document the core technical components of the system for those who will maintain
and/or develop the system.

NOTE: You have to pick up issues relevant to your project. The bigger the application to be produced, the more
detail you have to cover in the Technical Reference Guide.

Cover page

Table of Contents

Introduction

• Purpose of the guide
• Intended audience
• How to use the guide
• General conventions used in the guide

System Overview

• Technical architecture and requirements
• Architecture description and diagram
• Hardware platform
• Software platform
• Database server

• General description of major system components

System Components

• Web site structure
• Logical information structure
• Physical directory structure

• Database
• Structure (ER-diagram)
• SQL constructs for tables, indexes, views, ...

• Software modules
• Description
• Diagram
• Source code

Installation

• Source location(s)
• Installation procedure

Known errors and problems

Ideas for further development

November 2001 Page 9-21 Software Integration and Testing Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 10

INSTALLATION AND ACCEPTANCE PHASE

Section 10: Installation and Acceptance Phase

Table of Contents

 Installation and Acceptance Phase .. 10-0

Highlights of Phase .. 10-1
Overview ... 10-2
Perform Installation Activities ... 10-3
Conduct Installation Tests .. 10-4
Conduct Customer Training ... 10-5
Transition to Operational Status .. 10-6
Revise Maintenance Plan ... 10-7
Revise Project Plan .. 10-8
Conduct Structured Walkthrough(s) ... 10-9
Conduct In-Phase Assessment .. 10-10
Conduct Installation and Acceptance Phase Exit ... 10-11

January 2002 Page 10-i Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Highlights of Phase

Methods and Tools

Complete documentation for:

!

!

!

!

!

!

computer operators
data entry personnel/end users
maintenance programmers
management

Install system:

one of four approaches may be used
log all errors/problems to aid in
maintenance

Key Activities:

Perform Installation Activities
Conduct Installation Tests
Conduct Customer Training
Transition to Operational Status
Revise Maintenance Plan
Revise Project Plan
Conduct Structured Walkthrough(s)
Conduct In-Phase Assessment
Conduct Installation and Acceptance Phase Exit

Outputs:

! Converted data or system files
! Installation Test materials
! Customer Training materials
! Operational software product
! Operating documents
! Maintenance Plan (final)
! Project Plan (revised)

Inputs:

! Integration Test Materials
! System Test Materials
! Operating Documents

- Procedure Manual
- Programmers Reference Manual

! Training Plan
! Installation Plan
! Conversion Plan
! Acceptance Test Plan
! Pre-acceptance Checklist
! Security Checklist
! Maintenance Plan (draft)
! Project Plan (revised)
! Software Quality Assurance Plan
! Transition Plan

Installation and Acceptance Phase Highlights

January 2002 Page 10-1 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Overview

Description:

1) Installation and acceptance of

software product;
2) Install software and databases

onto hardware;
3) Verify that software meets

design;
4) Obtain acceptance and

approval;
5) Customer training

Review Process:

SDLC References:

Installation and acceptance of the software product are initiated after the
system test has been successfully completed. This phase involves the
activities required to install the software, databases, or data that comprise the
software product onto the hardware platform at the site(s) of operation. The
objectives of the activities in this phase are to verify that the software
product meets design requirements and to obtain the system owner's
acceptance and approval of the software product. The activities associated
with this phase should be performed each time the software product is
installed at an acceptance test site or production site.

Customer training may be required to complete the installation process. A
description of the training necessary for programmers, testers, customers,
and operations staff is provided in the Training Plan.

Quality reviews are necessary during this phase to validate the product and
associated deliverables. The activities that are appropriate for quality reviews
are identified in this section and the Section 2 Lifecycle Model. The time and
resources needed to conduct the quality reviews should be reflected in the
project resources, schedule, and work breakdown structure.

Section 2 Lifecycle Model, Quality Reviews, provides an overview of the
Quality Reviews to be conducted on a project.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for in-phase assessments.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 10-2 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Perform Installation Activities

Responsibility:

Description:

1) Migrate software and data;
2) Install firmware, hardware, and

communications equipment;
3) Implement system and data

conversion;
4) Compare new software with

current system;
5) Site preparation completed;
6) Conduct inventory

Steps:

Deliverables:

Review Process:

Project Team

The installation process involves loading, copying, or migrating the software
and data, if required, to the production platform and the provision of
operating documentation and other support materials at each site. The
installation of firmware, hardware, and communications equipment may also
be involved.

If a current system exists, implement system and data conversion in
accordance with the procedures described in the Conversion Plan. Each data
and file conversion should include a confirmation of data and file integrity.
Determine what the output in the new software product should be compared
with the current system, and assure that the data and files are synchronized.

At each installation site, inspect the facility to assure that site preparation is
complete and in accordance with the Installation Plan. Initiate any actions
that are needed to complete the preparations. Conduct an inventory of all
vendor provided hardware, software, firmware, and communications
equipment in accordance with the Acquisition Plan.

Follow the steps specified in the Installation Plan when installing the
software, hardware, and other equipment. Monitor all installation activities
including those performed by vendors.

Use the following steps to perform the installation activities:

! Coordinate the installation with the system owner, customers, operations

staff, and other affected organizations.

! Ensure that any necessary modifications to the physical installation

environment are completed.

! Inventory and test the hardware that will support the software product.

This inventory should be performed in advance of the planned
installation date to allow time for missing hardware to be obtained and
malfunctioning equipment to be replaced or repaired.

! If the software product requires an initial data load or data conversion,
install and execute the tested programs to perform this process. Install
the software product onto the hardware platform.

Not applicable.

Not applicable.

January 2002 Page 10-3 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Conduct Installation Tests

Responsibility:

Description:

1) Execute installation tests;
2) Verify software is properly

installed and operational;
3) Document any problems;
4) Identify corrective action;
5) Select diagnostic package;
6) Retest all equipment and

software

Deliverables:

Review Process:

Project Team

Ensure the integrity and quality of the installed software product by
executing the installation tests defined in the Installation Plan. Testing is
performed to verify that the software product has been properly installed and
is fully operational.

The installation test(s) are designed to validate all functions of the software
product and should specify a standard set of test results and tolerances. If the
software product being installed is a modification to an existing system, all
remaining functions and code that may be affected by the new software
should be tested.

Document any problems and identify corrective action. Select a diagnostic
package that will pinpoint problems quickly and allow for timely
corrections. Retest all equipment and software after a repair, replacement, or
modification.

Certify each software component on successful completion of installation
and checkout. When installation is complete, rerun a portion or all of the
system test and dry run the acceptance test procedures to verify correct
operation of the software product.

Conduct installation testing to verify the following:

! Security functions
! Integration with the current software
! Interfaces with other systems
! System functionality based on the requirements

Place a copy of all Installation Test materials in the Project Notebook.

Conduct structured walkthroughs of the Installation Test materials.

January 2002 Page 10-4 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Conduct Customer Training

Responsibility:

Description:

Deliverables:

Review Process:

Project Team

Customer training is an important factor in the success of the operational
software product. During training, most customers will receive their first
hands-on experience with the software product. Operations and maintenance
staff may also be trained to use, monitor, and maintain the software product.
The objective of the training is to provide the trainee with the basic skills
needed to effectively use the software product and to raise the customer's
confidence and satisfaction with the product.

The type of training will depend on the complexity of the software product,
and the number and location of the customers to be trained. Alternative
training formats include formal classroom training, one-on-one training,
computer-based instruction, and sophisticated help screens and online
documentation. Conduct the training as described in the Training Plan.

Conduct a pilot test of the training session(s). Include members of the project
team, the system owner, and key customers. Have all participants evaluate
the training content, instruction, and support materials. Make any necessary
changes to the training program prior to general customer training sessions.

If consecutive training classes are conducted, feedback should be requested
from the participants and used to continuously improve the training
approach, methods, and materials.

At the completion of the training, customers should have a thorough
understanding of the input requirements of each transaction, the processing
that takes place, and the types of output that are generated.

Submit a copy of the training materials to the system owner and customer for
review and approval. Place a copy of the approved training materials in the
Project Notebook.

Training materials are subject to the same configuration control procedures
as the other operating documents and should remain current with changes to
the software product.

Conduct structured walkthroughs of the training materials. The pilot test of
the training session(s) helps ensures implementation of a quality-training
program.

January 2002 Page 10-5 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Transition to Operation Status

Responsibility:

Description:

Deliverables:

Review Process:

Transition Team

The transition of the software product to full operational status begins after
the formal acceptance by the system owner. Use the procedures described in
the Transition Plan to implement the transition processes. Conduct or
support stress tests and other operational tests. Determine product tolerances
to adverse conditions, failure modes, recovery methods, and specification
margins. Complete any training and certification activities. Ensure that
support to be provided by contractors begins as planned.

The project team is usually expected to provide operational and technical
support during the transition. Identify project team personnel with a
comprehensive Understanding of the software product that can provide
assistance in the areas of software installation and maintenance, test, and
documentation of changes.

Technical support may involve the analysis of problems in software
components and operational procedures, the analysis of potential
enhancements, and vendor-supplied upgrades to software components (such
as the operating system or data base management system).

Transition to full operational status should be an event-oriented process that
is not complete until all transition activities have been successfully
performed. Withdraw the support of the project team personnel in a gradual
sequence to ensure the smooth operation of, and customer confidence in, the
software product. At the conclusion of the transition process, plan a formal
transfer of all responsibility to the maintenance staff.

All Project Notebook materials, operating documents, a list of any planned
enhancements, and other pertinent records should be turned over to the
maintenance staff. Access rules must be modified to provide access to the
product by the maintenance staff and to remove access by the project team
and other temporary customer accesses. Programs, files, and other support
software should be in the production library and deleted from the test library,
where appropriate.

For major software systems involving multiple organizations and interfaces
with other systems, a formal announcement of the transition to production is
recommended. The announcement should be distributed to all affected
groups. The names and telephone numbers of the maintenance staff should
be included.

The system is transitioned into operational status. Project Notebook
materials, operating documents, and other pertinent records are turned over
to the maintenance staff.

All reviews related to the functionality were completed prior to the system
being placed into operational status.

January 2002 Page 10-6 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Revise Maintenance Plan

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once system installation and acceptance are complete, determine if the
Maintenance Plan needs to be revised.

Review the Maintenance Plan for accuracy and completeness and make any
changes needed to update the information. Place a copy of the final
Maintenance Plan in the Project Notebook.

Conduct a structured walkthrough to ensure that the Maintenance Plan
reflects the necessary information.

The Maintenance Plan is formally reviewed during the In-Phase Assessment
and Phase Exit processes.

January 2002 Page 10-7 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Records Retention Schedule

Responsibility:

Description:

Deliverables:

Review Process:

Project Manager

Once system installation and acceptance are complete, determine if the
project estimates for resources, cost, and schedule need to be revised.

Review the Project Plan for accuracy and completeness of all Installation
and Acceptance Phase activities and make any changes needed to finalize the
information. Expand the information for the Maintenance Phase to reflect
accurate estimates of resources, costs, and hours. Place a copy of the final
Project Plan in the Project Notebook.

Note: A Project Plan is an effective management tool that is recommended
for all projects regardless of size. The plan can be consolidated for small
projects.

Conduct a structured walkthrough to ensure that the Project Plan reflects the
project's current status and adequately estimates the resources, costs, and
schedule for the Maintenance Phase.

The Project Plan is formally reviewed during the In-Phase Assessment and
Phase Exit processes.

January 2002 Page 10-8 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Conduct Structured Walkthroughs

Responsibility:

Description:

Deliverables:

SDLC References:

Project Manager, Work Product Author and Reviewers

This section describes the structured walkthroughs that are used with the
systems development lifecycle. The structured walkthrough is an organized
procedure for reviewing and discussing the technical aspects of software or
systems development lifecycle deliverables including documentation.
Structured walkthroughs are used to find errors early in the development
process and to improve the quality of the product. They are very successful
in identifying design flaws, errors in analysis or requirements definition, and
validating the accuracy and completeness of the deliverables.

Structured walkthroughs are conducted during all phases of the project
lifecycle. They are used during the development of work products that
contain deliverables. Structured walkthroughs are used after the deliverables
have been completed to verify the correctness and the quality of the finished
product. They should be scheduled in the work breakdown structure
developed for the project plan and can be referred to as code reviews, design
reviews, or inspections. Structured walkthroughs should also be scheduled to
review small, meaningful pieces of work. The progress made in each
lifecycle phase should determine the frequency of the walkthroughs;
however, they may be conducted multiple times on a deliverable to ensure
that it is free of defects.

Structured walkthroughs can be conducted at various times in the
development process, in various formats, with various levels of formality,
and with different types of participants. They typically require some advance
planning activities, a formal procedure for collecting comments, specific
roles and responsibilities for participants, and have prescribed follow-up
action and reporting procedures. Frequently reviewers include people outside
of the developer's immediate peer group.

During the Installation and Acceptance Phase, schedule at least one
structured walkthrough to review each of the Installation and Acceptance
Phase deliverables, i.e., Customer Training Materials, Acceptance Test
Report, and Acceptance Checklist.

Note: A structured walkthrough is an effective project management tool that
is recommended for all projects regardless of size; however, if an item has
gone through a prior formal structured walkthrough, and the modifications
are minor, a less formal review may be warranted.

A Structured Walkthrough Meeting Record is available to assist the
reviewers with recording errors found prior to the walkthrough session, and
for the scribe to record information discussed during the walkthrough. The
Project Manager ensures the presenter or author of the deliverable completes
a Structured Walkthrough Management Summary Report and a copy is
placed in the Project Notebook.

Appendix C, Conducting Structured Walkthroughs, provides a procedure and
sample forms that can be used for structured walkthroughs.

January 2002 Page 10-9 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Conduct In-Phase Assessment

Responsibility:

Description:

Deliverables:

SDLC Reference:

Project Manager and Independent Reviewer

An In-Phase Assessment (IPA) is an independent review of the deliverables
produced or revised during each phase of the project lifecycle. The
independent reviewer is typically a Quality Assurance representative who is
assigned to the software project and conducts all of the IPAs for the project.

An IPA does not require meetings with, or extra work by, the project team.
All of the deliverables needed for the review should be readily available in
the Project Notebook.

Schedule at least one IPA prior to the Installation and Acceptance Phase Exit
process. Additional IPAs can be performed during the phase, as needed.
Provide the reviewer with copies of all deliverables developed or revised
during the Installation and Acceptance Phase including the Project Plan. The
reviewer assesses the deliverables to verify the following:

! The project is complying with the systems development standards

and/or best practices.

! Sound project management practices are being used.

! Project risks are identified and mitigated.

Note: An IPA is an effective project management tool that is recommended
for all projects regardless of size.

An IPA report form is prepared by the independent reviewer and is used to
identify open issues that need to be resolved in this phase. The report is
delivered to the project manager and a copy should be placed in the Project
Notebook.

Appendix D, In-Phase Assessment Process Guide, provides a procedure and
sample report form that can be used for In-Phase Assessments.

January 2002 Page 10-10 Software Installation and Acceptance Phase

Section 10: Installation and Acceptance Phase

Conduct Installation and Acceptance Phase Exit

Responsibility:

Description:

Deliverables:

SDLC Reference:

Project Manager

The Phase Exit is a process for ensuring that projects meet the Agency and
project standards identified in the Project Plan. The goal of a Phase Exit is to
secure the approval of designated key individuals to continue with the
project and to move forward into the next lifecycle phase.

Schedule the Phase Exit as the last activity of the Installation and
Acceptance Phase. It is the responsibility of the project manager to notify the
appropriate participants when a project is ready for the Phase Exit process
and to schedule the Phase Exit meeting. All functional areas and the Quality
Assurance representative involved with the project should receive copies of
the deliverables developed in this phase.

During the Phase Exit meeting, participants discuss open issues that will
impact the Project Plan. The project manager should ensure that an
acceptable action plan is developed for handling all open issues. At the
conclusion of the meeting, concurrence is needed from the designated
approvers to begin the next phase.

A summary of the Phase Exit meeting is prepared by the project manager or
a designee and distributed to the meeting attendees. The summary identifies
any issues and action items needed to obtain concurrence prior to proceeding
to the Maintenance Phase.

Appendix E, Phase Exit Process Guide, provides a procedure and sample
report form that can be used for phase exits.

January 2002 Page 10-11 Software Installation and Acceptance Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 11

PROJECT CLOSEOUT

Section 11: Project Closeout Phase

Highlights of Phase

Project Closeout .. 11-0

November 2001 Page 11-i Project Closeout Phase

Section 11: Project Closeout Phase

Highlights of Phase

Facilitating Processes

Core Processes

Administrative
Closure

Develop Post
Implementation

Evaluation
Report

Financial
Closure

Financial
Audit

Lessons
Learned

Customer
Sign-off

Archiving

Personnel
and

Facilities

Post
Implementation

Evaluation
Report

Project Closeout

November 2001 Page 11-1 Project Closeout Phase

Section 11: Project Closeout Phase

Overview

Description:

This section describes the closeout activities associated with the systems
development lifecycle. The closeout phase is the last phase of the lifecycle.
The closeout phase is performed once all defined project objectives have
been met and the customer has accepted the project’s product.

The project closeout template can be found on the project management
methodology Web site at: http://www.michigan.gov/dit.

November 2001 Page 11-2 Project Closeout Phase

SYSTEMS DEVELOPMENT LIFECYCLE

SECTION 12

EMERGENCY MAINTENANCE

Section 12: Emergency Maintenance

Table of Contents

Emergency Maintenance ... 12-0

January 2002 Page 12-i Emergency Maintenance

Section 11: Project Closeout Phase

Highlights of Phase

Emergency Maintenance

January 2002 Page 12-2 Emergency Maintenance

Section 12: Emergency Maintenance

Overview

e

Description:

This section describes the emergency maintenance activities associated with
the systems development lifecycle. The emergency maintenance phase is
performed once all defined project objectives have been met and the
customer has accepted the project’s product.

The process of correcting flaws and enhancing the capability of an
information system.

Scope : An operational information system.

Input : Known flaws in or a request to enhance an operational information
system.

Tasks :

Evaluate System

Assess Changes or Enhancement Requests

Analyze the Nature of the Change

Analyze the Impact of the Change

Execute the Change

Output : Enhanced or maintained operational information system.

 HOW A MAINTENANCE REQUEST MOVES THROUGH AN ORGANIZATION

January 2002 Page 12-3 Emergency Maintenanc

Section 12: Emergency Maintenance

Overview

Emergency Maitnenance:

Corrective Maintenance:

System Enhancement:

Preventive Maintenance:

Changes made to a system to fix or enhance its functionality

Changes made to a system to repair flaws in its design, coding or
implementation:

Process:
• Users report bug
• IS staff evaluates, assigns
• Benchmark, test original
• Make changes
• Benchmark, test changed system
• Coordinate version ID
• Update documentation
• Report outcome to user

Types:
• Adaptive Maintenance - Changes made to a system to evolve its
 functionality to changing business needs or technologies.
• Perfective Maintenance - Changes made to a system to add new
 features or to improve performance

Process:
• Initiated by
– User request
– IS-driven (new technology)
– Reengineering
• Analyze scope of change
– Analysis
– Design
– Program change

Changes made to a system to avoid possible future problems.

January 2002 Page 12-4 Emergency Maintenance

Section 12: Emergency Maintenance

What is Software Maintenance?

Description:

Types of Maintenance:

Maintenance is concerned with the process used in performing software
maintenance. Such a process would include phases similar to those in a
process for developing a new software product. A maintenance process
starts with a change request and a preliminary problem analysis. Next, a
managerial and technical analysis is undertaken to investigate and
determine the cost of alternative solutions. Then, the chosen solution is
implemented and tested. Finally, the change is released to the customer.

Software Maintenance is:

! Changes that have to be made to computer programs after they have

been delivered to the customer.
! The performance of those activities required to keep a software system

operational and responsive after it is accepted and placed into
production.

! Maintenance covers the life of a software system from the time it is
installed until it is phased out.

! Modifications of a software product after delivery to correct faults,
improve performance or other attributes, or to adapt the product to a
modified environment.

! Software product undergoes modification to code and associated
documentation due to a problem or the need for improvement. The
objective is to modify existing software product while preserving its
integrity.

The common theme of the above definitions is that maintenance is an
“after-the-fact” activity. Maintenance occurs after the product is in
operation (during post delivery phase).

Corrective - Change to a software product after delivery to correct defects.

Adaptive - Change to a software product after delivery to keep it
functioning properly in a changed or changing environment.

Emergency - Unscheduled corrective maintenance required to keep a
system operational.

Scheduled - Change to a software product after delivery on a routine basis
to improve performance or maintainability

January 2002 Page 12-5 Emergency Maintenance

Section 12: Emergency Maintenance

The Maintenance Process

Description:

The following describes the maintenance model:

1. Type of Request – a request for change to the software starts the

maintenance process. The request for change is submitted in the form
of a modification request. The maintenance request is typically a
correction to the system. Enhancements are handled by tailoring the
full Systems Development Lifecycle (SDLC) to the modification
request.

2. Analysis – during the analysis phase, a feasibility analysis is
conducted. The feasibility analysis looks at items such as the impact of
the modification, alternative solutions, and costs.

3. Design – during the design phase, all of the information that has been
gathered up to this point is now reviewed and is used to design the
modification.

4. Implementation – during the implementation phase, a plan is
developed to put the modification into effect.

5. Test – systems testing tests the interfaces between programs to ensure
that the system meets all of the original requirements.

6. Acceptance – acceptance testing is done on a fully integrated system,
and is performed by the customer.

January 2002 Page 12-6 Emergency Maintenance

Section 12: Emergency Maintenance

The Maintenance Process

Description
Continued:

7. Delivery – during this phase, the project manager delivers the new
system to the customer for installation and operation.

Characteristics Development and major
enhancements projects

SMR
(Small Maintenance Requests)

Complexity
(high/low)

Necessitates a team of software
programmers and users. One or two people can be sufficient

Size
(large /small)

Necessitates financial , organizational
and structural planning.

The effort represents only few hours
or few days

Visibility
(important/less important) Necessitates corporate visibility. Limited to operations

Controls
(formal / informal)

Necessitates a project manager, a
control committee. A first-level supervisor is sufficient.

Approval
(formal / informal)

Necessitates the approval of senior
management.

Operational management approval is
sufficient.

Organization
(structured / non

structured)
Necessitates a project management
approach.

Necessitates a queue management
approach .

Characteristics of projects vs small maintenance requests

January 2002 Page 12-7 Emergency Maintenance

Section 12: Emergency Maintenance

The Maintenance Process

Evaluate System:

Assess Changes or Enhancement
Requests:

Analyze the Nature of the Change:

Analyze the Impact of the Change:

Execute the Change:

Both at regular intervals and an ad-hoc basis, benefits and costs are
measured and compared with design objectives. Service levels are also
measured and evaluated. This evaluation may lead to proposed changes or
enhancements.

Requests may result from formal evaluation of the system, but more often
they come from user, or information technology departments. The impact of
each request must be assessed before the steps needed to carry out the
changes can be defined.

The scope of the requested change must be analyzed. The change may
affect the structural aspects of the system (e.g., a change in the system
software parameters related to performance, or a new release of the
operating system),the design of the system (e.g., a change in the screen
layout), or even the business model on which the system is based (e.g., a
business change, such as a change in the logic of a process).

The impact of any requested change may be extensive and may even
include effects on other systems. This task includes identifying the earliest
point in the development path that is affected by the change, and then
identifying the deliverables that are affected by tracing the task
dependencies. With this information, developers can determine which tasks
of each stage will have to be repeated and can estimate the cost of doing so.
The quality of impact assessment is to a large extent determined by the
availability of a repository that stores and relates development information.

Select appropriate tasks from the ADM to execute the "change." The impact
analysis described above identifies the tasks of planning, analysis, design
and construction that must be carried out in order to realize the change.
These tasks are now executed in exactly the same way as they were
originally carried out. Implementation related tasks often must be carried
out as well.

January 2002 Page 12-8 Emergency Maintenance

Section 12: Emergency Maintenance

What Kind of Changes are Being Made

What Kinds of Changes Are Being Made?
To answer this question, we developed the software change taxonomy shown in
Table 2. It includes 10 types of changes and root causes for each change type.

January 2002 Page 12-9 Emergency Maintenance

Computational

Incorrect operand in equation
Incorrect use of parentheses
Incorrect/inaccurate equation
Rounding or truncation error

Logic

Incorrect operand in logical expression
Logic out of sequence
Wrong variable being checked
Missing logic or condition test
Loop iterated incorrect number of times

Input

Incorrect format
Input read from incorrect location
End-of-file missing or encountered
prematurely

Data Handling

Data file not available
Data referenced out-of-bounds
Data initialization
Variable used as flag or index not set
properly
Data not properly defined/dimensioned
Subscripting error

Output

Data written to different location
Incorrect format
Incomplete or missing output
Output garbled or misleading

Interface

Software/hardware interface
Software/user interface
Software/database interface

Section 12: Emergency Maintenance

What Kind of Changes are Being Made

Software/software interface

Operations

COTS/GOTS software change
Configuration control

Performance

Time limit exceeded
Storage limit exceeded
Code or design inefficient
Network efficiency

Specification

System/system interface
Specification incorrect/inadequate
Requirements specification
incorrect/inadequate
User manual/training inadequate

Improvement

Improve existing function
Improve interface

Table 2. Software change taxonomy.
We categorized the changes delivered in the last eight releases using this

taxonomy. This

January 2002 Page 12-10 Emergency Maintenance

	Version 1.0�Systems Development Lifecycle
	Points of Contact

	Acknowledgements
	3-TOC.pdf
	Section 1 - Introduction
	Section 3 – Project Initiation
	Section 4 – Planning Phase
	Section 10 – Installation and Acceptance Phase

	4-Introduction.pdf
	Project Management

	5-Lifecycle Model.pdf
	Description:
	Adaptations:
	Planning

	Introduction:
	People:
	People Continued:
	People Continued:
	People Continued:
	Process:
	Process Continued:

	6-Project Initiation.pdf
	PROJECT INITIATION

	7-Planning Phase.pdf
	Description:
	Determine feasibility of successfully developing and implementing the project;
	Questions:
	Note: Feasibility may not be an issue for some small software development projects. A Feasibility Review is not required when feasibility is obvious.
	Project Planning Questionnaire:
	Description:
	Conduct Structured Walkthroughs
	Conduct In-Phase Assessment
	SDLC Reference:

	Conduct Requirements Definition Phase Exit
	Description
	
	
	
	
	
	Security Risk/Severity Level Graph

	8-Requirements Definition.pdf
	Description:
	Deliverables:
	
	
	
	
	Types of

	Description:
	Deliverables:
	Review Process:
	Description:
	Description:
	Description:
	Description:
	Criterion
	Review Process:
	Operating
	Environment:
	Operating
	Environment
	Continued:
	Description:
	SDLC Reference:
	Description:
	Deliverables:
	Deliverables
	Continued:
	Deliverables:
	Deliverables:
	Review Process:

	Conduct Structured Walkthroughs
	Conduct In-Phase Assessment
	SDLC Reference:

	Conduct Requirements Definition Phase Exit

	9-Functional Design.pdf
	What to do;
	Review Process:
	Description:
	Steps:
	Basic Guidelines:
	Basic Guidelines
	Description
	Continued
	Deliverables:
	Review Process:
	Deliverables:
	Deliverables:
	Review Process:
	Deliverables:
	Review Process:
	Deliverables:
	Review Process:
	Deliverables:
	Tasks:
	Review Process:
	Continued:
	Review Items:
	Review Process:
	
	
	
	
	Conduct Structured Walkthroughs

	SDLC Reference:
	Conduct In-Phase Assessment
	SDLC Reference:
	SDLC Reference:

	10-System Design.pdf
	Description:
	Translate customer-oriented functional design specifications;
	Description:
	Evaluate system architecture alternatives;
	Deliverables:
	Review Process:
	Tasks:
	Description:
	Description:
	Description:
	Description:
	Define dynamics, data transformation, and data storage requirements;
	Deliverables:
	Review Process:
	Description:
	Description:
	Description:
	Deliverables:
	Review Process:
	Resource:
	Description:
	Translate requirements into precise descriptions of the software components;
	Deliverables:
	Description:
	Deliverables:
	Description:
	Description:
	Deliverables:
	Review Process:
	Sample Characteristics:
	Description:
	Description:
	Deliverables:
	Review Process:
	Conduct Structured Walkthroughs
	Description:

	Conduct In-Phase Assessment
	Description:
	SDLC Reference:

	Conduct System Design Phase Exit
	Description:
	SDLC Reference:

	11-Programming Phase.pdf
	SECTION 8
	Review Process:
	Resource:
	Deliverables:
	Review Process:
	Resources:
	Establish Programming Environment:
	Deliverables:
	Review Process:
	Generate source and object code
	Coding Practices:
	Coding
	Practices
	Continued:
	Deliverables:
	Review Process:
	Deliverables:
	Review Process:
	Resources:
	Deliverables:
	Deliverables:
	Review Process:
	
	
	
	
	
	Conduct In-Phase Assessment
	Conduct Programming Phase Exit

	12-Integration & Testing.pdf
	Optional
	Deliverables:
	Review Process:
	Steps:
	Deliverables:
	Deliverables
	Continued:
	Review Process:
	Resource:
	Review Process:
	Obtain acceptance of software;
	Deliverables:
	Review Process:
	Steps:
	
	
	
	
	
	Version 01

	Version Implementation
	
	
	
	
	Conduct Structured Walkthroughs

	SDLC Reference:
	
	
	
	
	Conduct In-Phase Assessment
	Conduct Software Integration and Testing Phase Exit

	SDLC Reference:

	13-Installation & Acceptance.pdf
	INSTALLATION AND ACCEPTANCE PHASE
	Installation and acceptance of software product;
	Migrate software and data;
	Steps:
	Deliverables:
	Review Process:
	Execute installation tests;
	Deliverables:
	Deliverables:
	Review Process:
	Deliverables:
	Deliverables:
	Review Process:
	Deliverables:
	Review Process:
	Deliverables:
	SDLC Reference:
	Deliverables:
	SDLC Reference:

	15-Emergency Maintenance.pdf
	Evaluate System:
	Analyze the Impact of the Change:
	Execute the Change:

